首页 | 本学科首页   官方微博 | 高级检索  
     


Catalytic ozonation of propanal using wood fly ash and metal oxide nanoparticle impregnated carbon
Authors:Kastner James R  Ganagavaram Rangan  Kolar Praveen  Teja Amyn  Xu Chunbao
Affiliation:Department of Biological and Agricultural Engineering, Driftmier Engineering Center, The University of Georgia, Athens 30602, USA. jkastner@engr.uga.edu
Abstract:Catalytic ozonation of propanal at ambient temperatures (23-25 degrees C) was investigated by varying propanal and ozone concentrations and catalyst type. The catalysts tested included wood fly ash (WFA), magnetically separated ash, synthetic hematite and magnetite, and metal oxide nanoparticle impregnated activated carbon and peanut hull char. A power law model independent of ozone concentration for WFA (r(w), moles g(-1) s(-1)) and magnetite (r(m)) were, respectively, r(w) = k'(w) C(R(0.89)) and r(m) = k'(m)C(R(1.55)), where kw, and k'(m) were 2.36 x 10(-6) g(-1) s(-1) (moles)(-0.11) (m3)(0.89) and 6.5 x 10(-4) g(-1) s(-1) (moles)(-0.55) (m3)(1.55), respectively (5-15 ppmv). Magnetite and hematite present in the WFA were theorized to be the primary active sites, since magnetically separated WFA had a significantly higher reaction rate (approximately 12x, mol m(-2) s(-1)) than that of WFA. X-ray diffraction analysis demonstrated a qualitative increase in magnetite and hematite in the magnetically separated ash, and synthetic magnetite and hematite had reaction rates >80x and 200x that of WFA or activated carbon (surface area basis). Supercritical deposition of hematite on/in peanut hull char successfully generated a porous, pelleted catalystfrom an agricultural residue capable of oxidizing propanal at rates 12x activated carbon and similar to commercially available catalysts (per mass basis). Water vapor significantly increased the propanal reaction rate when using wood fly ash and activated carbon.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号