首页 | 本学科首页   官方微博 | 高级检索  
     

基于非线性时序模型盲辨识的因子隐Markov模型识别方法
引用本文:李志农,郝伟,韩捷,褚福磊,吴昭同. 基于非线性时序模型盲辨识的因子隐Markov模型识别方法[J]. 机械工程学报, 2007, 43(1): 191-195
作者姓名:李志农  郝伟  韩捷  褚福磊  吴昭同
作者单位:郑州大学振动工程研究所,郑州,450002;清华大学精密仪器与机械学系,北京,100084;浙江大学现代制造工程研究所,杭州,310027
基金项目:中国博士后科学基金 , 国家自然科学基金 , 河南省教育厅自然科学基金
摘    要:基于模型辨识的机械有效故障特征提取方法中输入信号难以确定,以及机械设备运行过程中具有信息量大、非平稳、特征重复再现性差的特点,结合非线性时序模型盲辨识和因子隐Markov模型,提出一种基于非线性时序模型盲辨识的特征提取的因子隐Markov模型识别方法,并应用到旋转机械升降速过程故障诊断中.同时还与基于Fourier变换、小波变换的特征提取的因子隐Markov模型识别方法进行比较,试验结果表明该方法是有效的.

关 键 词:盲系统辨识  因子隐Markov模型(FHMM)  故障诊断  非线性时间序列  模式识别
修稿时间:2006-02-10

FACTORIAL HIDDEN MARKOV MODEL RECOGNITION METHOD BASED ON BLIND DENTIFICATION OF NONLINEAR TIME SERIES MODELS
LI Zhinong,HAO Wei,HAN Jie,CHU Fulei,WU Zhaotong. FACTORIAL HIDDEN MARKOV MODEL RECOGNITION METHOD BASED ON BLIND DENTIFICATION OF NONLINEAR TIME SERIES MODELS[J]. Chinese Journal of Mechanical Engineering, 2007, 43(1): 191-195
Authors:LI Zhinong  HAO Wei  HAN Jie  CHU Fulei  WU Zhaotong
Abstract:Considering the problem of hardly determinate input signals in machine fault diagnosis method based on the system identification,and the characteristics of the abundant informa-tion,non-stationary,poor repeatability and reproducibility in the operating process of the mechanical equipment,here,combined blind identification of nonlinear time model and factorial hid-den Markov Model(FHMM),a fault diagnosis approach named as BSI-FHMM,is proposed.This approach is that blind identi-fication of nonlinear time series model is used as a feature ex-traction,and FHMM as a classifier,the proposed approach has been successfully completed in the speed-up and speed-down process of rotating machinery.At the same time,this approach is compared with another two fault diagnosis approaches named FFT-FHMM,wavelet-FHMM respectively.In the FFT-FHMM and wavelet-FHMM recognition approaches,the Fourier trans-formation and wavelet transformation is used as a feature ex-traction respectively,FHMM as a classifier.Experimentresults show that the BSI-FHMM recognition approach is supe-rior to the FFT-FHMM and wavelet-FHMM recognition approaches.
Keywords:Blind system identification(BSI) Factorial hidden Markov model(FHMM) Fault diagnosis Nonlinear time series Pattern recognition
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号