首页 | 本学科首页   官方微博 | 高级检索  
     

自组织映射神经网络在入侵检测中的应用
引用本文:贾伟峰,张凤荔,童彬,万明成. 自组织映射神经网络在入侵检测中的应用[J]. 计算机工程与应用, 2009, 45(23): 115-117. DOI: 10.3778/j.issn.1002-8331.2009.23.032
作者姓名:贾伟峰  张凤荔  童彬  万明成
作者单位:电子科技大学,计算机科学与工程学院,成都,610054;安阳师范学院,河南,安阳,455000;电子科技大学,计算机科学与工程学院,成都,610054
基金项目:国家242信息安全计划项目 
摘    要:提出了一种基于SOM神经网络的入侵检测方法。该方法采用有标签的数据训练SOM神经网络,然后根据训练的结果标记正常数据和异常数据聚类的神经元。检测时则根据被检测数据的最佳匹配神经元的标签判断攻击是否发生。为验证检测的有效性,采用KDD cup99的训练集与测试集,将基于SOM的检测方法与基于SVM的检测方法的检测效果做了对比。实验结果表明:基于SOM的入侵检测方法具有检测率高、训练时间短和通用性强等特点。

关 键 词:自组织映射  入侵检测  网络安全  神经网络  支持向量机
收稿时间:2008-05-06
修稿时间:2008-9-8 

Application of self-organization map neural network in intrusion detection
JIA Wei-feng,ZHANG Feng-li,TONG Bin,WAN Ming-cheng. Application of self-organization map neural network in intrusion detection[J]. Computer Engineering and Applications, 2009, 45(23): 115-117. DOI: 10.3778/j.issn.1002-8331.2009.23.032
Authors:JIA Wei-feng  ZHANG Feng-li  TONG Bin  WAN Ming-cheng
Affiliation:1.School of Computer Science and Engineering,UESTC,Chengdu 610054,China 2.Anyang Normal University,Anyang,Henan 455000,China
Abstract:An intrusion detection method based on SOM is proposed.At training phase of the intrusion detection,SOM neural network is trained with labeled dataset and then label neurons with ‘normal’ or ‘attack’ according to the training result.During the procedure of detection,unknown data is determined whether it is normal or not according its’ BMU’s label.For validate the performance of this method,result of detection using SVM is compared to method proposed in this paper with KDD cup99 dataset,and the experiment shows that SOM based intrusion detection method has a better detection rate while consuming limit time.
Keywords:Self-Organization Map(SOM)  intrusion detection  network security  neural network;Support Vector Machine(SVM)
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号