首页 | 本学科首页   官方微博 | 高级检索  
     


Role of oxygen in surface kinetics of SiO2 growth on single crystal SiC at elevated temperatures
Authors:Yongjie Zhang  Shaoxiang Liang  Yi Zhang  Rulin Li  Zhidong Fang  Shuai Wang  Hui Deng
Affiliation:1. Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, PR China;2. Engineering, Faculty of Science, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
Abstract:Understanding surface kinetics of SiO2 growth on single crystal SiC at elevated temperatures is crucial to fabricate high-performance SiC-based devices. However, the role of oxygen in the evolution mechanism of SiC surface at atomic scale has not been comprehensively elaborated. Here, we reveal the manipulation effect of oxygen on the competitive growth of thermal oxidation SiO2 (TO-SiO2) and thermal chemical vapor deposition SiO2 (TCVD-SiO2) on the 4H-SiC substrate at 1500 °C. TO-SiO2 is formed by the thermal oxidation of SiC, in which the substrate undergoes layer-by-layer oxidation, resulting in an atomically flat SiC/TO-SiO2 interface. TCVD-SiO2 growth includes the sublimation of Si atoms, the reaction between sublimated Si atoms and reactive oxygen, and the adsorption of gaseous SixOy species. A relatively high sublimation rate of Si atoms at SiC atomic steps causes the transverse evolution of the nucleation sites, leading to the formation of nonuniform micron-sized pits at the SiC/TCVD-SiO2 interface. The low oxygen concentration favors TCVD-SiO2 growth, whose crystal quality is much better than that of TO-SiO2 due to the high surface mobility in the thermal CVD process. We further achieve the epitaxial growth of graphene on 4H-SiC in an almost oxygen-free reaction atmosphere. Additionally, ReaxFF reactive molecular dynamic simulation results illustrate that the decrease in oxygen concentration can promote the growth kinetics of SiO2 on single crystal SiC from being dominated by thermal oxidation to being dominated by thermal CVD.
Keywords:Single crystal SiC  Thermal oxidation  Thermal CVD  Oxygen concentration  Surface kinetics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号