Abstract: | Two capillary membranes, single-phase Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) and dual-phase 75 wt% Ce0.85Sm0.15O1.925 - 25 wt% Sm0.6Sr0.4Cr0.3Fe0.7O3-δ (SDC-SSCF), with dense cross section, were successfully prepared through the plastic extrusion method. The dual-phase capillary membrane shows higher strength compared to the BSCF counterpart, while the two capillary membranes exhibit much higher fracture strength than those of hollow fiber membranes. The oxygen permeation fluxes of both membranes increase with the increase of temperature and flow rate of sweep gas at the ambient pressure, and can be greatly improved by applying high pressures to the feed side. The oxygen permeation flux of BSCF capillary membrane is up to 19.5 mL cm?2 min?1 when 0.5 MPa air was applied to the feed side at 900 °C, which is one order of magnitude higher than that of SDC-SSCF capillary membrane. Thus, both capillary membranes have their own advantages and meet applications under different operation conditions. |