首页 | 本学科首页   官方微博 | 高级检索  
     


Silica-silicon composites for near-infrared reflection: A comprehensive computational and experimental study
Authors:Kevin Conley  Shima Moosakhani  Vaibhav Thakore  Yanling Ge  Joonas Lehtonen  Mikko Karttunen  Simo-Pekka Hannula  Tapio Ala-Nissila
Abstract:Compact layers containing embedded semiconductor particles consolidated using pulsed electric current sintering exhibit intense, broadband near-infrared reflectance. The composites consolidated from nano- or micro-silica powder have a different porous microstructure which causes scattering at the air-matrix interface and larger reflectance primarily in the visible region. The 3 mm thick composite compacts reflect up to 72% of the incident radiation in the near-infrared region with a semiconductor microinclusion volume fraction of 1% which closely matches predictions from multiscale Monte Carlo modeling and Kubelka-Munk theory. Further, the calculated spectra predict a reddish tan compact with improved reflectance can be obtained by decreasing the average particle size or broadening the standard deviation. The high reflectance is achieved with minimal dissipative losses and facile manufacturing, and the composites described herein are well-suited to control the radiative transfer of heat in devices at high temperature and under harsh conditions.
Keywords:A - sintering  B - composites  C - optical properties
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号