首页 | 本学科首页   官方微博 | 高级检索  
     


Flexible rGO-SnO2 supercapacitors converted from pastes containing SnCl2 liquid precursor using atmospheric-pressure plasma jet
Authors:Jung-Hsien Chang  Ming-Feng Lin  Yu-Lin Kuo  Chii-Rong Yang  Jian-Zhang Chen
Abstract:Reduced graphene oxide (rGO)-SnO2 nanocomposites are fabricated on carbon cloth from screen-printed pastes containing rGO nanoflakes and SnCl2 liquid precursor by using a nitrogen atmospheric-pressure plasma jet (APPJ). RGO-SnO2-coated carbon cloth is then used as the electrode of gel-electrolyte supercapacitors (SCs). Experiments conducted with various APPJ processing times suggest that the optimal APPJ processing time is 300 s. Cyclic voltammetry (CV) measurements indicate that 300-s APPJ processing results in the best areal capacitance of 97.53 mF/cm2. The capacitance retention rate is ~85% after a 10,000-cycle CV test. Further, capacitance increases by 11% after a 1000-cycle bending test under a bending radius of 7.5 mm, possibly owing to the better electrolyte/electrode contact and decrease in the charge transport resistance after mechanical bending. This study also characterized APPJ-processed rGO-SnO2 nanocomposites by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, X-ray diffractometry, Raman spectroscopy, and water contact angle measurements.
Keywords:Reduced graphene oxide  Tin oxide  Tin chloride  Atmospheric pressure plasma  Supercapacitor  Flexible electronics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号