首页 | 本学科首页   官方微博 | 高级检索  
     


Structural rearrangement by Ni,Cr doping in zinc cobaltite and its influence on supercapacitance
Authors:GG Soundarya  B Nalini  D Lakshmi  P Priyanka
Abstract:Transitional metal oxides are prevalent in the energy storage devices due to their remarkable electrochemical activity and charge storage capability. In this study, a spinel structured zinc cobaltite (ZnCo2O4) is doped with Ni and Cr to form a novel (Ni,Cr:ZnCo2O4) electrode material towards supercapacitor (SC) applications. Dopants served as a conductivity booster, particle size reducer and active sites provider benefitting the electrochemical activity. Comparatively, the doped sample delivered a higher capacitance value of 575 Fg-1 in the potential range of 0–0.6V with 1 M KOH solution as an electrolyte which is higher than that of the pristine material and better cyclic stability is improved from 82.2% to 90.24% for 2000 cycles. The specific capacitance value of 30 Fg-1 and 73 Fg-1 at 0.75 Ag-1 is achieved for the fabricated asymmetric supercapacitor device with Ni,Cr:ZnCo2O4 using Cu foil and Ni foam as current collector respectively. The device assembled with doped sample using Ni foam current collector has an energy density of 16.3 WhKg?1 and a power density of 0.9 KWKg?1 superseding the performance of the devices constructed with the pristine ZnCo2O4. The performance of Ni and Cr doped spinel structured zinc cobaltite device indicates a notable progress towards the direction of better performance supercapacitor applications.
Keywords:Supercapacitors  Transitional metal oxides  Assembled supercapacitor device  Electrochemical analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号