首页 | 本学科首页   官方微博 | 高级检索  
     

基于最小二乘支持向量机的机枪加速寿命建模
引用本文:张军,单永海,曹殿广,郑玉新,葛欣鑫. 基于最小二乘支持向量机的机枪加速寿命建模[J]. 兵工学报, 2012, 33(1): 63-68
作者姓名:张军  单永海  曹殿广  郑玉新  葛欣鑫
作者单位:(63856部队,吉林 白城 137001)
摘    要:加速寿命试验可以在短时间内对产品寿命进行有效评定。针对以往机枪加速寿命模型预测能力较差的问题,提出了基于最小二乘支持向量机(LS-SVM)建立加速寿命模型的方法。以机枪寿终射弹量为寿命特征,以试验环境温度、枪管最大温度、射击间隔时间以及最大膛压为加速应力建立了机枪加速寿命模型。由于LS-SVM的参数选取是决定建立模型优劣的关键因素,因此采用遗传算法对LS-SVM参数进行优化选取。通过分析比较LS-SVM与常规变换方法和BP神经网络建立的机枪加速寿命模型精度,结果表明利用LS-SVM方法建立的模型明显优于其他2种方法,验证了LS-SVM在机枪加速寿命预测应用中的有效性。

关 键 词:系统工程  最小二乘支持向量机  神经网络  遗传算法  加速寿命试验  
收稿时间:2010-09-10

Accelerated Life Modeling for Machine Gun Based on LS-SVM
ZHANG Jun , SHAN Yong-hai , CAO Dian-guang , ZHENG Yu-xin , GE Xin-xin. Accelerated Life Modeling for Machine Gun Based on LS-SVM[J]. Acta Armamentarii, 2012, 33(1): 63-68
Authors:ZHANG Jun    SHAN Yong-hai    CAO Dian-guang    ZHENG Yu-xin    GE Xin-xin
Affiliation:(Unit 63856 of PLA, Baicheng 137001, Jilin, China)
Abstract:Product life can be assessed effectively in the short period of time by using accelerated life test.Aimed at problems resulted from poor predictive ability of the previous accelerated life model,a method to establish accelerated life model for machine guns based on LS-SVM was proposed.It took the machine gun’s shooting ammunition quantity before the life end as the life feature and selected the test ambient temperature,barrel’s maximum temperature,shooting interval,maximum pressure in bore as the accelerated stresses.A genetic algorithm was adopted to determine the optimal parameters of LS-SVM.The prediction results show that the model established in this paper are better than the general transformation and BP neural network models obviously,and the LS-SVM method are effective on accelerated life prediction for machine guns.
Keywords:system engineering  LS-SVM  neural network  genetic algorithm  accelerated life test
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《兵工学报》浏览原始摘要信息
点击此处可从《兵工学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号