首页 | 本学科首页   官方微博 | 高级检索  
     

求解VLSI 电路划分问题的混合粒子群优化算法
引用本文:郭文忠,陈国龙,XIONG Naixue,彭少君. 求解VLSI 电路划分问题的混合粒子群优化算法[J]. 软件学报, 2011, 22(5): 833-842. DOI: 10.3724/SP.J.1001.2011.03980
作者姓名:郭文忠  陈国龙  XIONG Naixue  彭少君
作者单位:1. 福州大学,数学与计算机科学学院,福建,福州,350108
2. 福州大学,数学与计算机科学学院,福建,福州,350108;离散数学及其应用教育部重点实验室,福建,福州,350003
3. Department,of,Computer,Science,Georgia,State,University,Georgia,30303,USA
基金项目:国家自然科学基金,国家重点基础研究发展计划(973),福建省自然科学基金,福建省科技创新平台计划
摘    要:电路划分是VLSI物理设计过程中的一个关键阶段.该问题本质上是一个NP困难的组合优化问题.针对该问题,提出了一种带FM策略的混合粒子群优化算法.引入遗传算法的两点交叉算子和随机两点交换变异算子,保证了粒子在位置更新后依然可行;为了提高算法的局部搜索能力,将具有较强局部搜索能力的FM策略融入算法的位置更新;设计了种群多样性变异策略,提高了种群多样性,避免了易陷入局部最优的缺陷.对ISCAS89标准测试电路的仿真实验结果表明,所构造的算法是有效的.

关 键 词:电路划分  最小割  粒子群优化  超大规模集成电路
收稿时间:2010-06-30
修稿时间:2011-01-06

Hybrid Particle Swarm Optimization Algorithm for VLSI Circuit Partitioning
GUO Wen-Zhong,CHEN Guo-Long,XIONG Naixue and PENG Shao-Jun. Hybrid Particle Swarm Optimization Algorithm for VLSI Circuit Partitioning[J]. Journal of Software, 2011, 22(5): 833-842. DOI: 10.3724/SP.J.1001.2011.03980
Authors:GUO Wen-Zhong  CHEN Guo-Long  XIONG Naixue  PENG Shao-Jun
Affiliation:1(College of Mathematics and Computer Sciences,Fuzhou University,Fuzhou 350108,China) 2(Key Laboratory of Discrete Mathematics with Applications of the Ministry of Education,Fuzhou 350003,China) 3(Department of Computer Science,Georgia State University,Georgia 30303,USA)
Abstract:Circuit partitioning is an important part of any very large scale integration (VLSI) physical design automation, but it is a NP-hard combinatorial optimization problem. In this paper, a hybrid particle swarm optimization algorithm with FM strategy is proposed to approch this problem. Inspired by the mechinism of genetic algorithm (GA), two-point crossover and random two-point exchange mutation operators have been designed to avoid generating infeasible solutions. To improve the ability of local exploration, FM strategy is applied to the proposed algorithm to update its position. A mutation strategy is also built into the proposed algorithm to achieve better diversity and break away from local optima. Experiments on ISCAS89 benchmark circuits show that the proposed algorithm is efficient.
Keywords:circuit partitioning   min cut   particle swarm optimization   very large scale integration circuit
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号