首页 | 本学科首页   官方微博 | 高级检索  
     


Powder metallurgy T15 tool steel: Part II. Microstructure and properties after heat treatment
Authors:K S Kumar  A Lawley  M J Koczak
Affiliation:(1) Martin Marietta Laboratories, 21227 Baltimore, MD;(2) Department of Materials Engineering, Drexel University, 19104 Philadelphia, PA
Abstract:The effect of powder particle size and heat treatment on the micro structure and properties of hot isostatically pressed (“hipped”) T15 tool steel has been evaluated. Gas-atomized powder was screened into size fractions covering the range of ≤44 to 1200 /i-m and hipped at 1130 ‡C or 1195 ‡C. The consolidated powders were austenitized at 1175 ‡C or 1225 ‡C and tempered at 538 ‡C, 552 ‡C, or 565 ‡C to control prior austenite grain size, carbide type, carbide volume fraction, and carbide size distribution. Properties measured were bend strength, C-notch impact toughness, and hot hardness. Prior austenite grain size increases with hot isostatic pressing (“hipping”) temperature and austenitizing temperature but is independent of the particle size; similarly, the influence of austenitizing temperature on dissolution of MC and M6C is independent of the particle size. In each particle size fraction, the volume fraction and size distribution of MC are independent of the tempering temperature. For M6C, the volume fraction increases and the size distribution is skewed to coarser sizes with increasing tempering temperature. No significant differences in strength and toughness were detected as a function of particle size. Hot hardness is not affected by the particle size. The hot hardness of a powder blend (≤1200 Μm) hipped at 1130 ‡C was superior to that of commercial powder metallurgy (PM) T15 tool steel hipped at 1195 ‡C; this is attributed to a finer carbide size in the noncommercial material. It is established that the subcommercial hipping temperature (1130 ‡C) results in significant microstructural refinement; there is an associated small amount of residual porosity, and this controls the mechanical properties.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号