首页 | 本学科首页   官方微博 | 高级检索  
     


A Hole‐Transporting Material with Controllable Morphology Containing Binaphthyl and Triphenylamine Chromophores
Authors:Q He  H Lin  Y Weng  B Zhang  Z Wang  G Lei  L Wang  Y Qiu  F Bai
Abstract:An organic compound with two triphenylamine moieties linked with binaphthyl at the 3,3′‐positions (2,2′‐dimethoxyl‐3,3′‐ di(phenyl‐4‐yl‐diphenyl‐amine)‐1,1′]‐binaphthyl, TPA–BN–TPA) can be synthesized by Suzuki coupling. Amorphous and homogeneous films are obtained by either vacuum deposition or spin‐coating from solution in good solvents, while single crystals are grown in an appropriate polar solvent. X‐ray crystallography showed that a TPA–BN–TPA crystal is a multichannel structure containing solvent molecules in the channels. The intramolecular charge‐transfer state resulting from amino conjugation effects is observed by solvatochromic experiments. The high glass‐transition temperature (130 °C) and decomposition temperature (439 °C) of this material, in combination with its reversible oxidation property, make it a promising candidate as a hole‐transport material for light‐emitting diodes. With TPA–BN–TPA as the hole‐transporting layer in an indium tin oxide/TPA–BN–TPA/aluminum tris(8‐hydroxyquinoline)/Mg:Ag device, a brightness of about 10 100 cd m–2 at 15.6 V with a maximum efficiency of 3.85 cd A–1 is achieved, which is superior to a device with N,N′‐di(1‐naphthyl)‐N,N′‐diphenyl‐1,1′‐biphenyl]‐4,4′‐diamine as the hole‐transporting layer under the same conditions. Other devices with TPA–BN–TPA as the blue‐light‐emitting layer or host for a blue dye emitter are also studied.
Keywords:Charge transfer  Hole transport  Light‐emitting diodes  organic
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号