首页 | 本学科首页   官方微博 | 高级检索  
     


Optimizing an APSP implementation for NVIDIA GPUs using kernel characterization criteria
Authors:Hector Ortega-Arranz  Yuri Torres  Arturo Gonzalez-Escribano  Diego R Llanos
Affiliation:1. Dpto. Informática, Universidad de Valladolid, Valladolid, Spain
Abstract:During the last years, GPU manycore devices have demonstrated their usefulness to accelerate computationally intensive problems. Although arriving at a parallelization of a highly parallel algorithm is an affordable task, the optimization of GPU codes is a challenging activity. The main reason for this is the number of parameters, programming choices, and tuning techniques available, many of them related with complex and sometimes hidden architecture details. A useful strategy to systematically attack these optimization problems is to characterize the different kernels of the application, and use this knowledge to select appropriate configuration parameters. The All-Pair Shortest-Path (APSP) problem is a well-known problem in graph theory whose objective is to find the shortest paths between any pairs of nodes in a graph. This problem can be solved by highly parallel and computational intensive tasks, being a good candidate to be exploited by manycore devices. In this paper, we use kernel characterization criteria to optimize an APSP algorithm implementation for NVIDIA GPUs. Our experimental results show that the combined use of proper configuration policies, and the concurrent kernels capability of new CUDA architectures, leads to a performance improvement of up to 62 % with respect to one of the possible configurations recommended by CUDA, considered as baseline.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号