首页 | 本学科首页   官方微博 | 高级检索  
     

基于集合Kalman滤波的河道洪水预报研究
引用本文:岳延兵,李致家,李振兴. 基于集合Kalman滤波的河道洪水预报研究[J]. 水电能源科学, 2011, 29(1)
作者姓名:岳延兵  李致家  李振兴
作者单位:1. 河海大学水文水资源学院,江苏,南京,210098;山西水利职业技术学院,山西,运城,044004
2. 河海大学水文水资源学院,江苏,南京,210098
3. 山西水利职业技术学院,山西,运城,044004
摘    要:为提高河道洪水预报精度,研究了集合Kalman滤波法与最小二乘法对马斯京根模型参数率定的河道洪水预报技术,并以长水-白马寺实测洪水为例进行了对比检验,探讨了集合Kalman滤波法的多时段预报洪水过程及其特点.检验结果表明,应用集合Kalman滤波技术优于最小二乘法的预报效果,可有效提高河道洪水预报的精度并能适度延长预报时段.

关 键 词:集合Kalman滤波  数据同化  信息融合  洪水预报

Study of River Channel Flood Forecasting by Ensemble Kalman Filtering
YUE Yanbing,LI Zhiji,LI Zhenxing. Study of River Channel Flood Forecasting by Ensemble Kalman Filtering[J]. International Journal Hydroelectric Energy, 2011, 29(1)
Authors:YUE Yanbing  LI Zhiji  LI Zhenxing
Affiliation:YUE Yanbing1,2,LI Zhijia1,LI Zhenxing2(1.College of Hydrology and Water Resources,Hohai University,Nanjing 210098,China,2.Shanxi Conservancy Technical College,Yuncheng 044004,China)
Abstract:Ensemble Kalman filtering and least square method is used to estimate the Muskingum model parameter for improving the river channel flood forecasting accuracy.Taking observed flood in Changshui-Baima Temple for an example,multi-period flood forecasting and its characteristics with ensemble Kalman filtering are discussed.Test results show that the effect of ensemble Kalman filtering is better than that of the least square method;time interval and accuracy for river channel flood forecasting is improved.
Keywords:ensemble Kalman filtering  data assimilation  information fusion  flood forecasting  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号