首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism of image formation for thick biological specimens: exit wavefront reconstruction and electron energy-loss spectroscopic imaging
Authors:K. F. HAN  J. W. SEDAT  D. A. AGARD
Abstract:With increasing frequency, cellular organelles and nuclear structures are being investigated at high resolution using electron microscopic tomography of thick sections (0·3–1·0 μm). In order to reconstruct the structures in three dimensions accurately from the observed image intensities, it is essential to understand the relationship between the image intensity and the specimen mass density. The imaging of thick specimens is complicated by the large fraction of multiple scattering which gives rise to incoherent and partially coherent image components. Here we investigate the mechanism of image formation for thick biological specimens at 200 and 300 keV in order to resolve the coherent scattering component from the incoherent (multiple scattering) components. Two techniques were used: electron energy-loss spectroscopic imaging (ESI) and exit wavefront reconstruction using a through-focus series. Although it is commonly assumed that image formation of thick specimens is dominated by amplitude (absorption) contrast, we have found that for conventionally stained biological specimens phase contrast contributes significantly, and that at resolutions better than ~10 nm, superposed phase contrast dominates. It is shown that the decrease in coherent scattering with specimen thickness is directly related to the increase in multiple scattering. It is further shown that exit wavefront reconstruction can exclude the microscope aberrations as well as the multiple scattering component from the image formation. Since most of the inelastic scattering with these thick specimens is actually multiple inelastic scattering, it is demonstrated that exit wavefront reconstruction can act as a partial energy filter. By virtue of excluding the multiple scattering, the ‘restored’ images display enhanced contrast and resolution. These findings have direct implications for the three-dimensional reconstruction of thick biological specimens, where a simple direct relationship between image intensity and mass density was assumed, and the aberrations were left uncorrected.
Keywords:TEM image formation  thick biological specimen  EELS  Ewald sphere reconstruction  exit wavefront reconstruction  contrast transfer function
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号