首页 | 本学科首页   官方微博 | 高级检索  
     


Image contrast of dielectric specimens in transmission mode near-field scanning optical microscopy: imaging properties and tip artefacts
Authors:G A VALASKOVIC  M HOLTON  G H MORRISON
Abstract:Near-field scanning optical microscopy (NSOM) is a scanned probe technique utilizing a subwavelength-sized light source for high-resolution imaging of surfaces. Although NSOM has the potential to exploit and extend the experimental utility of the modern light microscope, the interpretation of image contrast is not straightforward. In near-field microscopy the illumination intensity of the source (probe) is not a constant value, rather it is a function of the probe–sample electronic environment. A number of dielectric specimens have been studied by NSOM to elucidate the contrast role of specimen type, topography and crystallinity; a summary of metallic specimen observations is presented for comparative purposes. Near-field image contrast is found to be a result of lateral changes in optical density and edge scattering for specimens with little sample topography. For surfaces with considerable topography the contributions of topographic (Z) axis contrast to lateral (X,Y) changes in optical density have been characterized. Selected near-field probes have also been shown to exhibit a variety of unusual contrast artefacts. Thorough study of polarization contrast, optical edge (scattering) contrast, as well as molecular orientation in crystalline specimens, can be used to distinguish lateral contrast from topographic components. In a few cases Fourier filtering can be successfully applied to separate the topographic and lateral contrast components.
Keywords:Near-field scanning optical microscopy  super-resolution  force microscopy  scanning probe microscopy  dielectric contrast  tip artefacts  polarization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号