首页 | 本学科首页   官方微博 | 高级检索  
     

RPROP神经网络的电力系统谐波分析
引用本文:李鹏. RPROP神经网络的电力系统谐波分析[J]. 浙江水利水电专科学校学报, 2011, 0(4): 58-60,68
作者姓名:李鹏
作者单位:云南省电力设计院,云南昆明650011
摘    要:将RPROP(Resilient Propagation)神经网络运用到电力系统的谐波分析中,能够提高其精度以及速度.与BP(Back Propagation)不同,RPROP算法能够调整可变参数,因此能够避免一阶偏导数幅值信息对参数调整的影响,并且能够提高谐波分析的精确度以及收敛速度.通过对RPROP神经网络与BP神经进行比较,验证了基于RPROP神经网络的电力系统谐波分析具有的高精度以及收敛速度快等特点.

关 键 词:RPROP算法  神经网络  电力系统  谐波分析  汉宁窗

Power System Harmonic Analysis Based on RPROP ANNs
LI Peng. Power System Harmonic Analysis Based on RPROP ANNs[J]. Journal of Zhejiang Water Conservancy and Hydropower College, 2011, 0(4): 58-60,68
Authors:LI Peng
Affiliation:LI Peng(Yunan Electric Power Design Institue,Kunming 650011,China)
Abstract:For improving the speed and accuracy of harmonic analysis,a harmonic analysis method based on RPROP neural network is proposed.Hanning-windowed interpolation harmonic analysis algorithm is used to obtain initial weight and bias values of ANNs(Artificial Neural Networks)and the network takes RPROP algorithm as a training algorithm derived number.Different from the BP(Back Propagation)algorithm,the algorithm adjusts the parameters of ANNs by sign information of first-order partial derived number,which avoids the influence of amplitude information of first-order partial derived number which is useless for parameters adjustment.In the meantime,the algorithm does not have the problem of parameters selection.Therefore,the convergence speed,accuracy and real-time performance of power system harmonic analysis can be improved.Finally,BP ANNs and RPROP ANNs are used to analyze signal,and the comparison of the results verifies the conclusion.
Keywords:RPROP algorithm  neural network  power system  harmonic analysis  Hanning window
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号