首页 | 本学科首页   官方微博 | 高级检索  
     


The pH-Dependent Controlled Release of Encapsulated Vitamin B1 from Liposomal Nanocarrier
Authors: dm Juhsz  Ditta Ungor  Egon Z Vrkonyi  Norbert Varga  Edit Csap
Affiliation:1.MTA-SZTE “Momentum” Noble Metal Nanostructures Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary; (Á.J.); (D.U.); (E.Z.V.); (N.V.);2.MTA-SZTE Biomimetic Systems Research Group, Department of Medical Chemistry, University of Szeged, Dóm Sqr. 8, H-6720 Szeged, Hungary
Abstract:In this work, we firstly presented a simple encapsulation method to prepare thiamine hydrochloride (vitamin B1)-loaded asolectin-based liposomes with average hydrodynamic diameter of ca. 225 and 245 nm under physiological and acidic conditions, respectively. In addition to the optimization of the sonication and magnetic stirring times used for size regulation, the effect of the concentrations of both asolectin carrier and initial vitamin B1 on the entrapment efficiency (EE %) was also investigated. Thermoanalytical measurements clearly demonstrated that after the successful encapsulation, only weak interactions were discovered between the carriers and the drug molecules. Moreover, the dissolution profiles under physiological (pH = 7.40) and gastric conditions (pH = 1.50) were also registered and the release profiles of our liposomal B1 system were compared with the dissolution profile of the pure drug solution and a manufactured tablet containing thiamin hydrochloride as active ingredient. The release curves were evaluated by nonlinear fitting of six different kinetic models. The best goodness of fit, where the correlation coefficients in the case of all three systems were larger than 0.98, was reached by application of the well-known second-order kinetic model. Based on the evaluation, it was estimated that our liposomal nanocarrier system shows 4.5-fold and 1.5-fold larger drug retention compared to the unpackaged vitamin B1 under physiological conditions and in artificial gastric juice, respectively.
Keywords:asolectin  liposome  vitamin B1  nanocarrier  encapsulation  pH-controlled release
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号