首页 | 本学科首页   官方微博 | 高级检索  
     


Early Events, Kinetic Intermediates and the Mechanism of Protein Folding in Cytochrome c
Authors:Robert A Goldbeck  Eefei Chen  and David S Kliger
Affiliation:Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95046, USA; E-Mails: (E.C.); (D.K.)
Abstract:Kinetic studies of the early events in cytochrome c folding are reviewed with a focus on the evidence for folding intermediates on the submillisecond timescale. Evidence from time-resolved absorption, circular dichroism, magnetic circular dichroism, fluorescence energy and electron transfer, small-angle X-ray scattering and amide hydrogen exchange studies on the t ≤ 1 ms timescale reveals a picture of cytochrome c folding that starts with the ~ 1-μs conformational diffusion dynamics of the unfolded chains. A fractional population of the unfolded chains collapses on the 1 – 100 μs timescale to a compact intermediate IC containing some native-like secondary structure. Although the existence and nature of IC as a discrete folding intermediate remains controversial, there is extensive high time-resolution kinetic evidence for the rapid formation of IC as a true intermediate, i.e., a metastable state separated from the unfolded state by a discrete free energy barrier. Final folding to the native state takes place on millisecond and longer timescales, depending on the presence of kinetic traps such as heme misligation and proline mis-isomerization. The high folding rates observed in equilibrium molten globule models suggest that IC may be a productive folding intermediate. Whether it is an obligatory step on the pathway to the high free energy barrier associated with millisecond timescale folding to the native state, however, remains to be determined.
Keywords:Collapsed intermediate  secondary structure formation  disordered tertiary structure  conformational diffusion  unfolded chains  molten globule  heme misligation  time-resolved spectroscopy  far-UV circular dichroism  magnetic circular dichroism  Trp59 fluorescence  amide hydrogen exchange  small-angle X-ray scattering  thermophiles  three-state pathway
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号