首页 | 本学科首页   官方微博 | 高级检索  
     


One of two NTP binding sites in poliovirus RNA polymerase required for RNA replication
Authors:OC Richards  E Ehrenfeld
Affiliation:Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA. orichard@uci.edu
Abstract:The poliovirus RNA-dependent RNA polymerase (3Dpol) has been shown to contain two NTP binding sites by chemical cross-linking of oxidized nucleotide to the intact protein. Only one site (Lys-61) was shown to be essential for RNA chain elongation activity by purified enzyme; however, a full-length viral RNA, coding for an altered lysine residue (K276L) in the second site, generated virus with a minute plaque phenotype that rapidly reverted to a wild-type phenotype with Arg-276 replacing Leu-276 in 3D. Viruses with lysine to leucine substitutions in other positions of the second binding site of their polymerase proteins grew with wild-type phenotype. To test the significance of the second binding site, poliovirus 3Dpol was generated with lysine (wild-type), leucine, or arginine at residue 276 and tested for NTP cross-linking using 32P-oxidized GTP. Analysis of cyanogen bromide peptides of each 3D preparation showed that the second NTP binding site had severely reduced NTP binding in mu276(Leu) but not in the revertant mu276(Arg), despite the reported requirement for lysine in the cross-linking reaction. To eliminate the possibility that 32P-oxidized GTP cross-linked to Arg at residue 276, a model system was designed with unmodified amino acid or acetylated (alpha-amino) amino acid and 32P-oxidized GTP. Cross-linking to lysine, but not leucine or arginine, was observed thus eliminating the possibility that NTP could be cross-linked to residue 276 in 3D. We conclude that NTP binding at the second site in poliovirus 3D is at lysine residues at positions other than 276 (278 or 283), and nucleotide binding at these sites has no bearing on elongation activity or replication of the virus. Nucleotide binding only at the site including Lys-61 is essential for RNA replication.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号