首页 | 本学科首页   官方微博 | 高级检索  
     

基于遥感的黄河三角洲地区盐碱地分布监测
引用本文:邓小炼,于嵘,亢庆,王长耀. 基于遥感的黄河三角洲地区盐碱地分布监测[J]. 遥感信息, 2006, 0(5): 34-36
作者姓名:邓小炼  于嵘  亢庆  王长耀
作者单位:1. 三峡大学理学院,宜昌,443002
2. 广西壮族自治区环境保护科学研究所,南宁市,530022
3. 水利部珠江水利委没会珠江水利科学研究院,广州市,510611
4. 中国科学院遥感应用研究所,北京,100101
基金项目:中国科学院知识创新工程重大项目(KZCX1-SW-01-02)
摘    要:借助遥感技术可以快速准确提取盐碱地分布信息,本文使用TM遥感影像,利用光谱分析和图像处理相结合的方法,参考地理数据,对黄河三角洲地区盐碱地的分布状况进行了遥感分析。通过最大似然分类及神经网络亚像元分类两种监督分类方法的分类精度比较后发现,后者分类精度得到有效提高,总体分类精度从80.8%上升到85.6%,对于盐碱地地类的分类精度提高到85.45%。最后,在此基础上给出了该地区盐碱地分布图。

关 键 词:环境遥感  盐碱地  亚像元  黄河三角洲
文章编号:1000-3177(2006)87-0034-03
收稿时间:2006-03-09
修稿时间:2006-05-10

Monitoring of the Saline-alkali Land Distribution in Yellow River Delta Based on Remote Sensing
DENG Xiao-lian,YU Rong,KANG Qing,WANG Chang-yao. Monitoring of the Saline-alkali Land Distribution in Yellow River Delta Based on Remote Sensing[J]. Remote Sensing Information, 2006, 0(5): 34-36
Authors:DENG Xiao-lian  YU Rong  KANG Qing  WANG Chang-yao
Affiliation:1 China Three Gorges University 443002; 2 Environmental Protection Science Institute of Guangxi Chuang Autonomous Region 530022; 3 Pearl River Hydraulic Research Institute 510611; 4 Institute of Remote Sensing Applications, Chinese Academy of Sciences 100101
Abstract:There are some accuracy differences between several classification techniques. In this paper, two classification methods were used to monitor the saline-alkali land distribution in Yellow river delta. According to the comparison of classified images,the overall classification accuracy increased from 80.8 to 85.6,so it can be concluded that the neural net classification method is superior to the traditional maximum likelihood classification for saline-alkali land mapping. Finally the saline-alkali land distribution map in Yellow river delta was acquired.
Keywords:remote sensing of environment  saline-alkali land  subpixel  Yellow River Delta
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号