首页 | 本学科首页   官方微博 | 高级检索  
     


High-temperature growth and in-situ annealing of MgZnO thin films by RF sputtering
Authors:Y.Y. Kim  H.K. Cho  J.H. Kim  E.S. Jung
Affiliation:a School of Advanced Materials Science and Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do, 440-746, Republic of Korea
b Department of Materials Science and Metallurgy, Kyungbook National University, Daegu 702-701, Republic of Korea
c Major of Semiconductor Physics, Korea Maritime University, Busan, 606-791, Republic of Korea
Abstract:We report the effect of growth temperature and annealing on microstructural, elemental and emission properties of as-grown and in-situ annealed MgZnO thin films, containing ∼ 10 at. % Mg, grown at high temperature by RF sputtering. Microstructural analysis carried out by TEM reveals formation of thin oxide layer with increased layer thickness on growth temperature, in the interface between Si substrate and MgZnO thin film. Irrespective of growth temperature, increase in Mg mole fraction with increase in thickness of MgZnO thin film is observed from EDX and AES spectroscopy, and a maximum of 14 at. % Mg is observed at 800 °C. The photoluminescence investigation shows blue shift of 104 meV in MgZnO film grown at 800 °C, compared to the film grown at 600 °C, which is due to the enhancement of the Mg incorporation at higher temperature. In addition, annealing at the growth temperature enhanced the intensity ratio of the UV/deep level emission and increased the grain size. Thermal treatment in a vacuum improved the emission efficiency and changed the origin of the point defects.
Keywords:ZnO   MgZnO   Sputtering
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号