Effect of Simultaneous Addition of BiFeO3 and Ba(Cu0.5W0.5)O3 on Lowering of Sintering Temperature of Pb(Zr,Ti)O3 Ceramics |
| |
Authors: | Shoji Kaneko Dunzhuo Dong Kenji Murakami |
| |
Affiliation: | Department of Materials Science and Technology, Graduate School of Electronic Science and Technology, and Research Institute of Electronics, Shizuoka University, Johoku, Hamamatsu 432, Japan |
| |
Abstract: | Sintering of 0.5-wt%-MnO2-added Pb(Zr0.53Ti0.47)O3 ceramics progresses at 935°C for 50 min by the addition of complex oxides of perovskite-type crystal structure, BiFeO3 and Ba(Cu0.5W0.5)O3. In order to elucidate the low-temperature sintering mechanism of Pb(Zr,Ti)O3 ceramics, the shrinkage and the evolution of the microstructure of a compacted body during heating were studied. It has been shown that the densification process was separated into the following three stages: the rearrangement of grains, the grain boundary diffusion of atoms, and then grain growth. Also, microstructural and elemental analyses of the ceramics revealed the existence of an amorphous phase at the grain boundaries predominantly composed of lead and copper oxides. Consequently, this process can be facilitated by the occurrence of a transient liquid phase corresponding to the above amorphous phase. |
| |
Keywords: | |
|
|