首页 | 本学科首页   官方微博 | 高级检索  
     


Ablation resistant ZrC coating modified by polymer-derived SiC/TiC nanocomposites for ultra-high temperature application
Affiliation:1. State Key Laboratory of Solidification Processing, Carbon/carbon Composites Research Center, Northwestern Polytechnical University, Xi''an 710072, China;2. Shenzhen Research Institute of Northeastern Polytechnical Unversity, Shenzhen 518057, China
Abstract:To improve the ablation resistance of ZrC coating on SiC-coated carbon/carbon composites above 2000 °C, SiC/TiC nanocomposites (SiC/TiC-NCs) powders derived from single-source precursor were incorporated into ZrC coating, denoted as ZrC-SiC/TiC-NCs, via supersonic atmospheric plasma spraying (SAPS). After SAPS, the incorporated SiC/TiC-NCs evolved into TiC/(SiC and ZrxTiyC) embedded in amorphous SiC. The ablation resistance of the ZrC-SiC/TiC-NCs coating was evaluated by oxyacetylene flames with a heat flux of 4.18 MW/m2. For comparison, the ZrC-SiC-NCs coating without Ti modification was seriously damaged due to rapid gas denudation. The good ablation resistance of ZrC-SiC/TiC-NCs coating is mainly attributed to the distinctive “capsule-like” multi-crystalline microstructure of SiC/TiC-NCs. During ablation, TiO2 and ZrxTiyO2, due to the oxidation of TiC and ZrxTiyC, contributed to the formation of Zr-Ti-Si-O glass with high viscosity and low evaporation pressure, improving the ablation resistance.
Keywords:Carbon/carbon composite  Single-source precursor  Polymer derived ceramics  Ceramic coating  Ablation resistance
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号