首页 | 本学科首页   官方微博 | 高级检索  
     


Extrusion-based additive manufacturing of Ti3SiC2 and Cr2AlC MAX phases as candidates for high temperature heat exchangers
Affiliation:1. Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química, IAAB, Universidad Carlos lll de Madrid, Avda. De La Universidad 30, 28911, Leganés, Spain;2. RHP-Technology GmbH, Forschungs- Und Technologiezentrum, A-2444, Seibersdorf, Austria;1. Institut PPRIME, CNRS/Université de Poitiers/ENSMA, UPR 3346, TSA 41126, 86073, Poitiers Cedex 9, France;2. Université de Bordeaux, CNRS, Laboratoire des Composites ThermoStructuraux, UMR 5801, 33600, Pessac, France;3. Chair of Ceramics, Institute of Mineral Engineering (GHI), RWTH Aachen University, Forckenbeckstrasse 33, 52074, Aachen, Germany;4. Université Grenoble-Alpes, CNRS, Grenoble INP, LMGP, 38000, Grenoble, France;1. Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology “MISiS”, Leninskiy prospect, 4, 119049 Moscow, Russia;2. Plastic Deformation Materials Laboratory, Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, Academician Osipyan, 8, Chernogolovka, Moscow region, Russia;3. Center for X-Ray Structural Research and Materials Diagnosis, National University of Science and Technology “MISiS”, Leninskiy prospect, 4, Moscow, Russia;4. Modern Special Materials Department, Polzunov Altai State Technical University, Lenina avenue, 46, Barnaul, Altai region, Russia;1. Center of Materials Science and Engineering, School of Mechanical and Electronic Control Engineering, Beijing Jiaotong University, Beijing, 100044, China;2. Laboratoires MSSMat (UMR 8579) et SPMS (UMR 8580), CentraleSupélec, Université Paris-Saclay, 91190, Gif-sur-Yvette, France;3. Université de Lorraine, CNRS, Arts et Métiers, LEM3 and Labex Damas, Université de Lorraine, France;4. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, 100083, China;1. Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India;2. Materials Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India;1. Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK), 52425 Jülich, Germany;2. Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang, China
Abstract:High Temperature Heat Exchangers (HTHXs) are used in many industrial processes and are likely to become key components in green power generation. For the development of HTHXs, novel designs and new materials need to be explored. Additive manufacturing (AM) opens many possibilities for novel designs. Extrusion-based AM in general, and composite extrusion modelling (CEM) in particular, offers the opportunity of using new binder systems, that cannot be employed in other AM techniques. MAX phases, due to their ceramic-metallic properties combination, are great candidates for HTHXs. In this work, the printability of Ti3SiC2 and Cr2AlC, through CEM with an innovative sustainable binder is explored. For this purpose, rheological properties of the feedstocks and the influence of the printing parameters are studied for each MAX phase feedstock. Microstructural analysis and final sample characterisation is performed, in order to determine the suitability of this technique to obtain near-net shape MAX phase parts.
Keywords:MAX phase  Composite extrusion modelling (CEM)  Additive manufacturing  Pellet extrusion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号