首页 | 本学科首页   官方微博 | 高级检索  
     


Continuous aluminum oxide-mullite-hafnium oxide composite ceramic fibers with high strength and thermal stability by melt-spinning from polymer precursor
Affiliation:1. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China;2. University of Chinese Academy of Sciences, Beijing 100049, PR China
Abstract:Continuous aluminum oxide-mullite-hafnium oxide (AMH) composite ceramic fibers were obtained by melt-spinning and calcination from polymer precursor that synthesized by hydrolysis of the aluminum isopropoxide, dimethoxydimethylsilane and hafnium alkoxide. Due to the fine diameter of 8–9 µm, small grain size of less than 50 nm and the composite crystal texture, the highest tensile strength of AMH ceramic fibers was 2.01 GPa. And the AMH ceramic fibers presented good thermal stability. The tensile strength retention was 75.48% and 71.49% after heat treatment at 1100 °C and 1200 °C for 0.5 h respectively, and was 61.57% after heat treatment at 1100 °C for 5 h. And the grain size of AMH ceramic fibers after heat treatment was much smaller than that of commercial alumina fibers even when the heat treatment temperature was elevated to 1500 °C, benefited by the grain size inhibition of monoclinic-HfO2 (m-HfO2) grains distributed on the boundary of alumina and mullite grains.
Keywords:Ceramic fiber  Melt-spinning  Polymer precursor  Grain size
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号