首页 | 本学科首页   官方微博 | 高级检索  
     


Engineering grain boundary anisotropy to elucidate grain growth behavior in alumina
Affiliation:1. University of Florida, Gainesville, FL, USA;2. Oak Ridge National Laboratory, Oak Ridge, TN, USA
Abstract:Current grain growth models have evolved to account for the relationship between grain boundary energy/mobility anisotropy and the five degrees of grain boundary character. However, the role of grain boundary networks on overall growth kinetics remains poorly understood. To experimentally investigate this problem, a highly textured Al2O3 was fabricated by colloidal casting in a strong magnetic field to engineer a unique spatial distribution of grain boundary character. Microstructural evolution was quantified and compared to an untextured sample. From this comparison, a prevalence of (0001)/(0001) terminated grain boundaries with anisotropic networks were identified in the textured sample. These boundaries and their networks were found to be driving grain growth at a faster rate than predicted by models. These findings will allow better modelling of grain growth in real systems by experimentally exploring the impact thereon of grain boundary plane anisotropy and relative energy/mobility differences between neighboring boundaries.
Keywords:Grain growth  Thermomagnetic processing  Texture  Grain boundary network
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号