首页 | 本学科首页   官方微博 | 高级检索  
     


An experimental investigation of cylindrical wire electrical discharge turning process
Authors:Mohammad Jafar Haddad  Fereshteh Alihoseini  Mostafa Hadi  Meysam Hadad  Alireza Fadaei Tehrani  Aminollah Mohammadi
Affiliation:1. Manufacturing Engineering Division, Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
3. Manufacturing Engineering Division, Islamic Azad University, Branch of Dehaghan, Isfahan, Iran
2. Statistical Science Division, Mathematical Science Department, Isfahan University of Technology, Isfahan, Iran
4. Agricultural Economics Group, Ramin Agricultural and Natural Resources University, Ahvaz, Iran
Abstract:The cylindrical wire electrical discharge turning (CWEDT) process was developed to generate precise cylindrical forms on hard, difficult to machine materials. A precise, flexible, and corrosion-resistant submerged rotary spindle was designed and added to a conventional five-axis CNC wire electrical discharge machine (EDM) to enable the generation of free-form cylindrical geometries. The hardness and strength of the work material are no longer the dominating factors that affect the tool wear and hinder the machining process. In this study, the effect of machining parameters on surface roughness (R a) and roundness in cylindrical CWEDT of a AISI D3 tool steel is investigated. The selection of this material was made taking into account its wide range of applications in tools, dies, and molds and in industries such as punching, tapping, reaming, and so on in cylindrical forms. Surface roughness and roundness are chosen as two of the machining performances to verify the process. In addition, power, pulse off-time, voltage, and spindle rotational speed are adopted for evaluation by full factorial design of experiments. In this case, a 22?×?32 mixed full factorial design has been selected considering the number of factors used in the present study. The main effects of factors and interactions were considered in this paper, and regression equations were derived using response surface methodology. Finally, the surfaces of the CWEDT parts were examined using scanning electron microscopy (SEM) to identify the macro-ridges and craters on the surface. Cross sections of the EDM parts were examined using the SEM and microhardness tests to quantify the sub-surface recast layers and heat-affected zones under specific process parameters.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号