首页 | 本学科首页   官方微博 | 高级检索  
     


The vibration behavior of impeller blades in the five-axis CNC flank milling process
Authors:Kawin Sonthipermpoon  E Bohez  H Hasemann  M Rautenberg
Affiliation:1. Industrial Engineering Department, Naresuan University, Nakronswan–Phitsanulok Road, Thapo, Muang Phitsanuloke District, 65000, Thailand
2. School of Advanced Technologies, Asian Institute of Technology, Praholyothin Road, Pratumtrani, 12120, Thailand
3. Institute of Turbomachinery, University of Hanover, Appelstasse 9, 30167, Hanover, Germany
Abstract:Today, in most cases, impellers of centrifugal compressors are produced by flank milling on five-axis CNC milling machines. The complex three-dimensional geometry of the very thin blades consists of ruled surfaces. The flank milling process allows a fast production of the impellers and the surface of the blades is of high quality. The limited strength of the very thin blades and also the thin outer radial part of the disk lead to a high sensitivity to static and especially dynamic forces that are caused by the instationary flow in the impeller. The dynamic forces of rotating stall and surge are the most dangerous excitations of the bladed disk. Coupled vibrations may occur and damage the impeller. The highest static load is caused by the centrifugal forces. Therefore, most of the high-loaded impellers are manufactured from aluminum alloy or titanium because of the low density of this light metals and the relatively high strength. Most of the interests and the investigations in the last years are paid to the vibration behavior and the dynamic loads of the impeller during operation. But sometimes, the highest stress may occur during the production process and damage the impeller or weaken the strength and so cause later problems. Especially, excitations from the dynamic forces during the flank milling process have to be taken under consideration. The vibration behavior of the impeller is very complex and is affected by the vibration behavior of the cutter and the milling machine. In this paper, the change of the vibration behavior of centrifugal compressor impeller blades during the manufacturing process is investigated. During the finishing of the thin blades, the blade thickness is continuously changing and also the strength and the corresponding eigenfrequencies of the blade. The dynamic forces acting on the blades are caused by the cutter, the milling machine, and the cutting process. The quantity of the forces and the frequency of the excitation are determined by the rotational speed of the cutter, the feed, the number of edges, and the chip thickness. The results described in this paper give useful information about the change of the vibration behavior of the centrifugal impeller blades during the flank milling process and possible interaction with the cutter and the machine.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号