首页 | 本学科首页   官方微博 | 高级检索  
     

基于种群关系的多种群粒子群协同优化算法
引用本文:刘悦,杨桦,王青正. 基于种群关系的多种群粒子群协同优化算法[J]. 计算机系统应用, 2021, 30(10): 148-155. DOI: 10.15888/j.cnki.csa.007941
作者姓名:刘悦  杨桦  王青正
作者单位:开封大学信息工程学院,开封475004;上海交通大学电子信息与电气工程学院,上海200240
基金项目:国家自然科学基金(61702185); 河南省高等学校重点科研项目(19B520014); 河南省高等学校青年骨干教师培养计划(2017GGJS270)
摘    要:传统粒子群优化算法容易陷入局部最优解,搜索效率不高,针对此问题,提出了一种基于种群关系和斥力因子的多种群粒子群优化算法SRB-PSO (Swarm-Relation-Based PSO).根据当前搜索结果定义种群之间统治、对等和被统治3种关系,通过引入斥力因子来保证种群间搜索的多样性,并通过统治和被统治关系提高算法的搜索效率,从而在改善算法的全局搜索性能的同时提高解的质量.将算法与其他几种主流粒子群优化改进算法在标准测试集上进行对比,实验结果证明了SRB-PSO算法能较好地保持粒子多样性,全局搜索能力强,在解决多峰函数时的性能优于其他几种主流粒子群优化改进算法.

关 键 词:粒子群优化  多种群  种群关系  斥力因子  多峰问题
收稿时间:2020-09-19
修稿时间:2020-10-21

Multi-Swarm Particle Swarm Optimization Based on Population Relation
LIU Yue,YANG Hu,WANG Qing-Zheng. Multi-Swarm Particle Swarm Optimization Based on Population Relation[J]. Computer Systems& Applications, 2021, 30(10): 148-155. DOI: 10.15888/j.cnki.csa.007941
Authors:LIU Yue  YANG Hu  WANG Qing-Zheng
Affiliation:College of Information Engineering, Kaifeng University, Kaifeng 475004, China; School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract:Traditional Particle Swarm Optimization (PSO) is likely to converge to local optima when applied to multimodal problems, with low search efficiency. In this study, a novel multi-swarm PSO algorithm based on swarm relations and repulsion factors is proposed, called Swarm-Relation-Based PSO (SRB-PSO). Three swarm relations, including dominance, equivalence, and weakness, are defined according to the search results. The search diversity is guaranteed by introducing repulsion factors among equivalent populations and the search efficiency is increased by dominance and weakness relations. Thus, the global search ability of the algorithm is enhanced and the solution quality is improved. The new algorithm and several other versions of PSO are compared on a set of benchmark functions. The results show that the algorithm proposed in this study can well maintain the particle diversity and has outstanding global search ability. The proposed algorithm outperforms the other algorithms when solving multimodal problems.
Keywords:Particle Swarm Optimization (PSO)  multi-swarm  swarm relation  repulsion factor  multimodal problem
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号