首页 | 本学科首页   官方微博 | 高级检索  
     


Detection of a chemical warfare agent simulant in various aerosol matrixes by ion mobility time-of-flight mass spectrometry
Authors:Steiner Wes E  Klopsch Steve J  English William A  Clowers Brian H  Hill Herbert H
Affiliation:Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, USA.
Abstract:For the first time, a traditional radioactive nickel (63Ni) beta emission ionization source for ion mobility spectrometry was employed with an atmospheric pressure ion mobility orthogonal reflector time-of-flight mass spectrometer (IM(tof)MS) to detect a chemical warfare agent (CWA) simulant from aerosol samples. Aerosol-phase sampling employed a quartz cyclonic chamber for sample introduction. The simulant reference material, which closely mimicked the characteristic chemical structure of CWAs as defined and described by Schedule 1, 2, or 3 of the Chemical Warfare Convention treaty verification, was used in this study. An overall elevation in arbitrary signal intensity of approximately 1.0 orders of magnitude was obtained by the progressive increase of the thermal AP-IMS temperature from 75 to 275 degrees C. A mixture of one G-type nerve simulant (dimethyl methylphosphonate (DMMP)) in four (water, kerosene, gasoline, diesel) matrixes was found in each case (AP-IMS temperature 75-275 degrees C) to be clearly resolved in less than 2.20 x 10(4) micros using the IM(tof)MS instrument. Corresponding ions, masses, drift times, K(o) values, and arbitrary signal intensities for each of the sample matrixes are reported for the CWA simulant DMMP.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号