首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进对比学习和并行融合神经网络的室内WiFi定位算法
作者姓名:蒲巧林  陈有坤  周牧  余征巍  张钰坤
作者单位:1.重庆邮电大学通信与信息工程学院
基金项目:国家自然科学基金青年基金(62201110)、重庆市自然科学面上基金(CSTB2022NSCQ-MSX1385)项目资助
摘    要:机器学习在WiFi指纹定位技术中扮演着重要角色。针对信号波动对指纹辨识力的影响往往被忽略以及如何从样本中提取更广泛的表征信息的问题,提出了一种基于改进对比学习(CL)和并行融合神经网络的WiFi定位算法。该算法首先利用改进对比学习来提高指纹辨识力,其在增加不同类别指纹间的区分度的同时能减小同类别指纹间的差异。其次,构建基于卷积神经网络(CNN)和长短期记忆(LSTM)的并行融合网络,与传统的串行融合方式相比,网络可以从原始样本中提取更多的有效特征。此外,在池化层后增加Flatten层以进一步考虑网络的中间层信息,从而利用更广泛的特征信息来提高模型的泛化性能。结果表明,所提算法的定位性能比其他定位算法提高26%。

关 键 词:室内定位  对比学习  卷积神经网络  长短期记忆  特征融合  
点击此处可从《仪器仪表学报》浏览原始摘要信息
点击此处可从《仪器仪表学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号