首页 | 本学科首页   官方微博 | 高级检索  
     


Self-assembly of thiourea intercalated graphene oxide based dual IIP for the SPE coupled FAAS method development of Cu(II) and Pb(II) determination
Authors:Aminul Islam  Saman Rais
Affiliation:1. Analytical Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, India;2. Analytical Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, India

Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (lead), Methodology (lead), Software (lead), Validation (equal), Visualization (equal), Writing - original draft (lead), Writing - review & editing (lead)

Abstract:A new dual-template surface imprinted polymer for Cu(II) and Pb(II) was synthesized in one pot. Magnetic graphene oxide was self-assembled with low cost and environmentally benign thiourea. Presence of sulfur and nitrogen donor atoms provide hooks for coordination and partial reduction of graphene oxide matrix. It was used as an solid-phase extraction adsorbent for extraction, preconcentration, and coupled with flame atomic absorption spectrometry to manifest performance comparable with inductively coupled plasma atomic emission spectrometry (ICPAES) both in terms of quantification limit as well as interference. The critical experimental parameters such as pH; 4.6, contact time of 15 min and initial concentration of 777 (Qe; 227 mg g?1) and 800 μg L?1 (Qe; 273 mg g?1) for Cu(II) and Pb(II), respectively, were optimized using RSM-CCD and artificial neural network. The adsorption process was kinetically faster (50% adsorption in 5 min), following fractal-like-pseudo-second-order (FLPSO) kinetics and Brouers–Sotolongo isotherm model owing to the heterogenous energy landscape. The imprinting factors were in the range of 4–7 in the presence of all coexisting ions. The proposed method was robust in the determination and removal of Cu(II) and Pb(II) from food, ground water, and industry effluents with low limit of detection (Cu(II); 1.03 μg L?1 & Pb(II); 1.79 μgL?1). Spiking and recovery tests were used to assess the method's accuracy. Cu(II)/Pb(II) loaded dual template IIP (DIIP) was utilized to remove anionic dyes with >95% efficiency. Thorough examination of the method and material selectivity (in binary, ternary, and multielement system), multi fold applications of determination, removal of Cu(II), Pb(II), and removal of anionic dyes makes DIIP a promising candidate for environmental remediation.
Keywords:adsorption  analytical method development  analytical method validation  dyes  graphene oxide  ion imprinted polymer  metal ions  separation techniques
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号