首页 | 本学科首页   官方微博 | 高级检索  
     

基于新阈值函数和小波分析的数字图像去噪方法
引用本文:刘永平,郭小波. 基于新阈值函数和小波分析的数字图像去噪方法[J]. 电脑与信息技术, 2020, 0(2): 5-7,20
作者姓名:刘永平  郭小波
作者单位:河南工程学院计算机学院
基金项目:河南工程学院博士基金支持项目(项目编号:Dkj2018002);河南省科技厅科技攻关计划项目(项目编号:182102310025);河南省教育科学十三五规划课题(项目编号:2016—JKGHA—0060)。
摘    要:在数字图像处理过程中消除和减弱噪声对信号具有很重要的影响。中值滤波是传统的减少图像噪声,提高图像质量的可行方法。文章研究了中值滤波及其改进算法在图像去噪中的应用,基于小波分析基础理论和数字图像信号的小波变换分解重构原理,通过对小波分解系数选定恰当的阈值并进行阈值量化,基于小波分解后的高低频系数进行信号重构,从而有效去除或降低信号的噪声。本文采取的算法在MATLAB仿真平台进行了验证,结果表明,基于本文提出的阈值函数和小波分析处理方法对图像去噪具有更好的适应性,能够更好的改善数字图像的质量。

关 键 词:小波分析  中值滤波  图像去噪  重构

Digital Image Denoising Method Based on New Threshold Function and Wavelet Analysis
LIU Yong-ping,GUO Xiao-bo. Digital Image Denoising Method Based on New Threshold Function and Wavelet Analysis[J]. Computer and Information Technology, 2020, 0(2): 5-7,20
Authors:LIU Yong-ping  GUO Xiao-bo
Affiliation:(Department of Computer Science and Engineering,Henan Institute of Engineering,Zhengzhou 451191,China)
Abstract:In the process of digital image processing,it is very important to eliminate and weaken the noise.Median filtering is a traditional feasible method to reduce image noise and improve image quality.In this paper,the application of median filter and its improved algorithm in image denoising is studied.Based on the basic theory of wavelet analysis and the principle of wavelet transform decomposition and reconstruction of digital image signal,the appropriate threshold value is selected and quantized by wavelet decomposition coefficient,the signal is reconstructed based on the high and low frequency coefficients after wavelet decomposition,so as to effectively remove or reduce the noise of the signal.The algorithm adopted in this paper is verified in MATLAB simulation platform,and the results show that the threshold function and wavelet analysis method based on this paper have better adaptability to image denoising,and can better improve the quality of digital image.
Keywords:wavelet analysis  median filtering  image denoising  reconstruction
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号