首页 | 本学科首页   官方微博 | 高级检索  
     


Electrical,rheological, and mechanical properties copolymer/carbon black composites
Authors:Amanda M Alves  Shirley N Cavalcanti  Moacy P da Silva  Daniel M G Freitas  Pankaj Agrawal  Tomás J A de Mélo
Affiliation:Departamento de Engenharia de Materiais, Universidade Federal de Campina Grande. R. Aprígio Veloso, Campina Grande, Paraíba, Brazil
Abstract:This work aims to evaluate the electrical conductivity and the rheological and mechanical properties of copolymer/carbon black (CB) conductive polymer composites (CPCs). The copolymers, containing ethylene groups in their structure, used as matrix were polyethylene grafted with maleic anhydride (PEgMA), ethylene-methyl acrylate–glycidyl methacrylate (EMA-GMA), and ethylene-vinyl acetate (EVA). For comparison purposes, bio-based polyethylene (BioPE)/CB composites were also studied. The electrical conductivity results showed that the electrical percolation threshold of BioPE/CB composite was 0.36 volume fraction of CB, whereas the rheological percolation threshold was 0.25 volume fraction of CB. The most conductive CPC was BioPE/CB. Among the copolymer/CB CPCs, PEgMA/CB showed the highest conductivity, which can be attributed to the fact that the PEgMA copolymer had higher crystallinity. It also has a higher amount of ethylene groups in its structure. Torque rheometry analysis indicated that EMA-GMA copolymer may have reacted with CB. Rheological measurements under oscillatory shear flow indicated the formation of a percolated network in BioPE/CB and copolymer/CB composites. Morphology analysis by scanning electron microscopy (SEM) indicated the formation of a percolated network structure in BioPE/CB composite and finely dispersed CB particles within the PEgMA copolymer. Wetting of CB particles/agglomerates by the copolymer matrix was observed in EVA/CB and EMA-GMA/CB composites. Conductive CB acted as reinforcing filler as it increased the elastic modulus and tensile strength of BioPE and the copolymers.
Keywords:carbon black  copolymers  electrical conductivity  rheological and electrical percolation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号