首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传聚类算法的离群点检测
引用本文:钱光超,贾瑞玉,张然,李龙澍. 基于遗传聚类算法的离群点检测[J]. 计算机工程与应用, 2008, 44(11): 155-157. DOI: 10.3778/j.issn.1002-8331.2008.11.045
作者姓名:钱光超  贾瑞玉  张然  李龙澍
作者单位:安徽大学 计算机科学与技术学院,合肥 230039
基金项目:安徽省教育厅资助科研课题(the Research Project of Department of Education of Anhui Province, China under Grant No.2005KJ056)
摘    要:离群点检测是数据挖掘一个重要内容,它为分析各种海量的、复杂的、含有噪声的数据提供了新的方法。对离群数据挖掘几类主要的方法进行了分析和评价,并在此基础上了提出了一种基于遗传聚类的离群点检测算法。该算法结合了遗传算法全局搜索的优点和K-均值方法局部收敛速度快的特点,取得较好效果。实验验证该算法很好地检测到数据集中的离群点,同时还完成了数据集的聚类。具有较好的实用性。

关 键 词:离群点检测  数据挖掘  遗传算法  聚类  K-均值算法  
文章编号:1002-8331(2008)11-0155-03
收稿时间:2007-07-24
修稿时间:2007-07-24

Outlier detection based on genetic algorithm for clustering
QIAN Guang-chao,JIA Rui-yu,ZHANG Ran,LI Long-shu. Outlier detection based on genetic algorithm for clustering[J]. Computer Engineering and Applications, 2008, 44(11): 155-157. DOI: 10.3778/j.issn.1002-8331.2008.11.045
Authors:QIAN Guang-chao  JIA Rui-yu  ZHANG Ran  LI Long-shu
Affiliation:School of Computer Science and Technology,Anhui University,Hefei 230039,China
Abstract:Outlier detection,as an important aspect of data mining,provides a new method for analyzing various quantitative,complex and noisy data.In this paper,authors analyze and evaluate several major methods of the outlier data mining,and propose a new outlier detection algorithm which is based on an genetic algorithm for clustering.By integrating with global searching of the genetic algorithm and the good local convergence rate of the K-means algorithm,this algorithm gets a better result.Experiments show that this algorithm not only can detect the outliers in the dataset,but also complete the clustering of the dataset.So it has a good practicality.
Keywords:outlier detection  data mining  genetic algorithm  clustering  K-means algorithm
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号