首页 | 本学科首页   官方微博 | 高级检索  
     


Electrochemistry of free chlorine and monochloramine and its relevance to the presence of Pb in drinking water
Authors:Rajasekharan Vishnu V  Clark Brandi N  Boonsalee Sansanee  Switzer Jay A
Affiliation:Department of Chemistry and Graduate Center for Materials Research, University of Missouri-Rolla, Rolla, Missouri 65409-117, USA.
Abstract:The commonly used disinfectants in drinking water are free chlorine (in the form of HOCl/OCl-) and monochloramine (NH2Cl). While free chlorine reacts with natural organic matter in water to produce chlorinated hydrocarbon byproducts, there is also concern that NH2Cl may react with Pbto produce soluble Pb(II) products--leading to elevated Pb levels in drinking water. In this study, electrochemical methods are used to compare the thermodynamics and kinetics of the reduction of these two disinfectants. The standard reduction potential for NH2Cl/Cl- was estimated to be +1.45 V in acidic media and +0.74 V in alkaline media versus NHE using thermodynamic cycles. The kinetics of electroreduction of the two disinfectants was studied using an Au rotating disk electrode. The exchange current densities estimated from Koutecky-Levich plots were 8.2 x 10(-5) and 4.1 x 10(-5) A/cm2, and by low overpotential experiments were 7.5 +/- 0.3 x 10(-5) and 3.7 +/- 0.4 x 10(-5) A/cm2 for free chlorine and NH2Cl, respectively. The rate constantforthe electrochemical reduction of free chlorine at equilibrium is approximately twice as large as that for the reduction of NH2Cl. Equilibrium potential measurements show that free chlorine will oxidize Pb to PbO2 above pH 1.7, whereas NH2Cl will oxidize Pb to PbO2 only above about pH 9.5, if the total dissolved inorganic carbon (DIC) is 18 ppm. Hence, NH2Cl is not capable of producing a passivating PbO2 layer on Pb, and could lead to elevated levels of dissolved Pb in drinking water.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号