首页 | 本学科首页   官方微博 | 高级检索  
     


Whipple shield ballistic limit at impact velocities higher than 7 km/s
Authors:D. Palmieri   M. Faraud   R. Destefanis  M. Marchetti
Affiliation:

a University of Rome “La Sapienza”, Aerospace Department, V. Eudossiana 16, 00184, Rome, Italy

b Alenia Spazio, Strada Antica di Collegno 253, 10146, Turin, Italy

Abstract:The Whipple bumper shield was the first system developed to protect space structures against Meteoroids and Orbital Debris (M/OD), and it is still extensively adopted. In particular, Whipple shields are used to protect several elements of the International Space Station, although the most exposed areas to the M/OD environment are shielded by innovative low weigh and high resistance systems.

Hydrocode simulations were used to predict the ballistic limit of a typical aluminium Whipple shield configuration for space applications in the impact velocity range not accessible by the available experimental techniques. The simulations were carried out using the AUTODYN-2D and the PAMSHOCK-3D codes, allowing to couple the gridless Smoothed Particles Hydrodynamics with the Lagrange grid-based techniques. The global damage of the structure after the impact was determined with particular attention to the back wall penetration, and the results obtained with the two hydrocodes were compared with those given by semi-empirical damage equations.

A few hypervelocity Light Gas Gun impact experiments, performed on the same shield configuration at velocities up to 7.2 km/s, were previously simulated in order to assess the capability and limitations of the two hydrocodes in reproducing the experimental results available in the lower velocity regime. The influence of material models on the numerical predictions is discussed.

Keywords:Whipple shield   ballistic limit   hydrocodes   extrapolation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号