首页 | 本学科首页   官方微博 | 高级检索  
     

改进卷积玻尔兹曼机的图像特征深度提取
引用本文:刘凯,张立民,范晓磊. 改进卷积玻尔兹曼机的图像特征深度提取[J]. 哈尔滨工业大学学报, 2016, 48(5): 155-159
作者姓名:刘凯  张立民  范晓磊
作者单位:海军航空工程学院 基础实验部,264001 山东 烟台,海军航空工程学院 信息融合研究所, 264001 山东 烟台,第二炮兵工程大学 士官职业技术教育学院,262500 山东 青州
基金项目:国家自然科学基金项目(61032001).
摘    要:针对卷积深度和信念网络存在计算复杂度高和训练缓慢的问题,提出卷积深度玻尔兹曼机用于图像特征提取.针对卷积受限玻尔兹曼机进行改进,提出最大化图像中间区域概率的训练目标函数,并引入性能较好的交叉熵稀疏惩罚因子和dropout训练方法.设计卷积深度玻尔兹曼机结构,提出均值聚合机制,将聚合层内点的值定义为block中各点激活概率均值,对层间关联进行简化,将聚合层内各面直接叠加以供高层CRBM提取特征.通过在MNIST手写数字识别集上的实验结果证明,采用新模型提取的图像特征分类准确率提高0.5%、训练时间减少50%,且达到了目前MNIST数据集的最佳水平.

关 键 词:深度学习  图像特征提取  卷积受限玻尔兹曼机  卷积深度玻尔兹曼机
收稿时间:2005-04-01

New image deep feature extraction based on improved CRBM
LIU Kai,ZHANG Limin and FAN Xiaolei. New image deep feature extraction based on improved CRBM[J]. Journal of Harbin Institute of Technology, 2016, 48(5): 155-159
Authors:LIU Kai  ZHANG Limin  FAN Xiaolei
Affiliation:Department of Basic Experiment, Naval Aeronautical and Astronautical University, 264001 Yantai, Shandong, China,Research Institute of Information Fusion, Naval Aeronautical and Astronautical University, 264001 Yantai, Shandong, China and Noncommission Officers Vocational and Technical Education College, The Second Artillery Engineering University, 262500 Qingzhou, Shandong, China
Abstract:To resolve the problems of high computational complexity and slow training in Convolutional Deep Belief Net, Convolutional Deep Boltzmann Machine(CDBM) is proposed to extract image features. To improve the Convelution Restricted Boltzmann Machine(CRBM), a new training objective function to maximize the probability of intermediate image area is proposed, along with introducing the cross-entropy penalty factor and dropout training. After that, CDBM is designed based on modified CRBM. The mean-pool mechanism is presented to lessen computational complexity and improve the robustness of features for image scaling. The relationship between layers is simplified to extract high-level abstract features. The MNIST handwritten digits database is used to test this new model and the results prove that features extracted by CDBM are more accurate than CDBN. The classification accuracy rate increase at least 0.5%, and training time decrease more than 50%.
Keywords:deep learning   image features extraction   CRBM   CDBM
本文献已被 CNKI 等数据库收录!
点击此处可从《哈尔滨工业大学学报》浏览原始摘要信息
点击此处可从《哈尔滨工业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号