首页 | 本学科首页   官方微博 | 高级检索  
     


Optimization of RTA parameters to produce ultra-shallow, highly activated B+, BF 2 + , and As+ ion implanted junctions
Authors:Daniel F Downey  Steven D Marcus  Judy W Chow
Affiliation:(1) Varian Ion Implant Systems, 01930 Gloucester, MA;(2) Steag AST Elektroniks, Tempe, AZ, USA
Abstract:The effects of time, temperature, ramp-up, and ramp-down rates with rapid thermal annealing employing a STEAG AST SHS3000 were investigated on 1.0 and 2.0 keV 11B+, 2.2, 5.0, and 8.9 keV 49BF 2 + , and 2 KeV 75As+, 1E15/cm2 samples implanted in a Varian VIISion-80 PLUS ion implanter at 0o tilt angles. These annealed samples were analyzed by four-point probe, secondary ion mass spectrometry (SIMS), and in select cases by spreading resistance profiling (SRP) and transmission electron microscopy (TEM). To ensure reproducibility and to minimize oxidation enhanced diffusion as an uncontrolled variable, the O2 background concentration in N2 was maintained at a controlled low level. Under these conditions, ramp-rates alone were found not to be significant. Spike anneals (1050°C, ~ 0 s) with fast ramp-rates (240°C/s) and fast cool down rates (86°C/s) provided the shallowest junctions, while still yielding good sheet resistance values. Post annealed samples were examined for extended defect levels (by TEM) and trapped interstitial concentrations. Fluorine concentration measurements were employed to qualitatively explain differences in the B diffusion from 11B+ and 49BF 2 + ion implants at various energies. The 2.2 keV 49BF 2 + “fast” spike annealed sample at 1050°C exhibited limited, if any, enhanced diffusion, yielding a SIMS junction depth of 490Å, an electrical junction of 386Å (by SRP) and a sheet resistance of 406 ohm/sq.
Keywords:Boron shallow junctions  ion implants  rapid thermal annealing (RTA)  sheet resistance
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号