首页 | 本学科首页   官方微博 | 高级检索  
     


Dual-chemiresistor GC detector employing monolayer-protected metal nanocluster interfaces
Authors:Cai Qing-Yun  Zellers Edward T
Affiliation:Engineering Research Center for Wireless Integrated MicroSystems, Department of Environmental Health Sciences, University of Michigan, Ann Arbor 48109-2029, USA.
Abstract:The synthesis and testing of two gold-thiolate monolayer-protected (nano)clusters as interfacial layers on a dual-chemiresistor vapor sensor array are described. Responses (changes in dc resistance) to each of 11 organic solvent vapors are rapid, reversible, and linear with concentration at low vapor concentrations, becoming sublinear at higher concentrations. Limits of detection (LODs) range from 0.1 to 24 parts per million and vary inversely with solvent vapor pressure. When configured as a GC detector and used to analyze 0.5-L preconcentrated samples of the 11-vapor mixture, the array provides LODs of < or = 700 parts per trillion for most vapors, comparing favorably with those from an integrated array of polymer-coated surface acoustic wave sensors configured and tested similarly. This first report on the use of such an array as a GC detector shows that the combination of response patterns and GC retention times improves capabilities for vapor recognition compared to the sensor array alone or to single-detector GC systems. Spray-coated nanocluster thin films can be deposited reproducibly and exhibit response stability in air that ranges from fair to excellent for up to several months. Scaling the active device area down by a factor of 16 has no significant effect on sensitivity. Implications of these results for portable vapor sensing systems are discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号