Laser Zone Melting and microstructure of waveguide coatings obtained on soda-lime glass |
| |
Authors: | Francisco Rey-García María T. Flores-Arias Luis C. Estepa Wilfried Assenmacher Werner Mader German F. de la Fuente |
| |
Affiliation: | 1. Unidad Asociada de Óptica & Microóptica GRIN (CSIC-ICMA), Departamento de Física Aplicada, Escola de Óptica e Optometría, Universidade de Santiago de Compostela, Santiago de Compostela, Spain;2. Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Zaragoza, Spain;3. Institut für Anorganische Chemie der Universität Bonn, Bonn, Germany |
| |
Abstract: | This study presents a Laser Zone Melting method with potential for producing planar waveguides at large scale, based on the surface coupling of two chemically compatible glass layers which exhibit distinct indices of refraction. The method is based on a recent patent, particularly applicable to process glass and ceramics with low thermal shock resistance. Glass coatings containing 76.24% by weight PbO are thus here reported, as obtained by this method on commercial soda-lime planar glass substrates. Their higher indices of refraction (1.58 vs 1.52 for commercial soda-lime glass) result in attractive waveguiding potential, as demonstrated with measurements using focused light from a He-Ne laser beam. Scanning and transmission electron microscopy studies reveal excellent integration and compatibility between the observed coatings and substrates, where diffusion in the proximity of the interface was studied by EDS analysis. Crystalline phases have not been found within the coating, or within the substrate, as concluded from the absence of Bragg-peaks in XRD experiments. |
| |
Keywords: | characterization coatings electron microscopy fabrication microstructure optical waveguides secondary processing structure |
|
|