首页 | 本学科首页   官方微博 | 高级检索  
     


Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations
Affiliation:1. Institute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou, China;2. Laboratoire d''Aérologie, Centre National de la Recherche Scientifique, Toulouse, France;3. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China;1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China;2. Hangzhou Environmental Monitoring Center Station, Hangzhou 310007, China;3. CSIRO Energy, PO Box 52, North Ryde, NSW 1670, Australia;4. Office of Air Quality Planning & Standards, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
Abstract:Data on the concentrations of seven environmental pollutants (CH4, NMHC, CO, CO2, NO, NO2 and SO2) and meteorological variables (wind speed and direction, air temperature, relative humidity and solar radiation) were employed to predict the concentration of ozone in the atmosphere using both multiple linear and principal component regression methods. Separate analyses were carried out for day light and night time periods. For both periods the pollutants were highly correlated, but were all negatively correlated with ozone. Multiple regression analysis was used to fit the ozone data using the pollutant and meteorological variables as predictors. A variable selection method based on high loadings of varimax rotated principal components was used to obtain subsets of the predictor variables to be included in the regression model of the logarithm of the ozone data. It was found that while high temperature and high solar energy tended to increase the day time ozone concentrations, the pollutants NO and SO2 being emitted to the atmosphere were being depleted. Night time ozone concentrations were influenced predominantly by the nitrogen oxides (NO+NO2), with the meteorological variables playing no significant role. However, the model did not predict the night time ozone concentrations as accurately as it did for the day time. This could be due to other factors that were not explicitly considered in this study.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号