首页 | 本学科首页   官方微博 | 高级检索  
     

应用径向基函数神经网络预测单桩极限承载力
引用本文:郑永保,陈建功,董占文. 应用径向基函数神经网络预测单桩极限承载力[J]. 地下空间与工程学报, 2004, 24(4): 519-521
作者姓名:郑永保  陈建功  董占文
作者单位:重庆大学土木工程学院,重庆,400045;山西吕梁汾柳高速公路建设有限公司,山西省,离石市,033000
摘    要:在径向基函数神经网络的基本原理基础上,通过对影响单桩极限承载力因素的分析,建立了单桩极限承载力设计的GRNN模型,并进行了实例分析。计算结果具有较高的精度和收敛速度快等特点,是一种行之有效的预测单桩极限承载力方法。

关 键 词:神经网络  单桩  极限承载力
文章编号:1001-831X(2004)04-0519-03
修稿时间:2004-04-26

Application of RBF Neural Network in Estimating Vertical Ultimate Bearing Capacity of Single Piles
ZHENG Yong-bao et al. Application of RBF Neural Network in Estimating Vertical Ultimate Bearing Capacity of Single Piles[J]. Chinese Journal of Underground Space and Engineering, 2004, 24(4): 519-521
Authors:ZHENG Yong-bao et al
Affiliation:ZHENG Yong-bao et al
Abstract:In this paper, based on the main principle of RBF Neural Network, the affecting elements of the bearing capacity of single piles are analyzed. The GRNN model of ultimate bearing capacity of single piles is founded. By means of neural network toolbox of MATLAB, an example is calculated. The results are more accurate with higher convergent rate. This method is practical and effective in estimating vertical ultimate bearing capacity of single piles
Keywords:Artificial Neural Network  ultimate bearing capability   single pile
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号