首页 | 本学科首页   官方微博 | 高级检索  
     

基于多尺度双线性卷积神经网络的多角度下车型精细识别
引用本文:刘虎,周野,袁家斌. 基于多尺度双线性卷积神经网络的多角度下车型精细识别[J]. 计算机应用, 2019, 39(8): 2402-2407. DOI: 10.11772/j.issn.1001-9081.2019010133
作者姓名:刘虎  周野  袁家斌
作者单位:南京航空航天大学计算机科学与技术学院,南京,210000;南京航空航天大学计算机科学与技术学院,南京,210000;南京航空航天大学计算机科学与技术学院,南京,210000
基金项目:江苏省产学研前瞻性联合研究项目(BY2016003-11)。
摘    要:针对多角度下车辆出现一定的尺度变化和形变导致很难被准确识别的问题,提出基于多尺度双线性卷积神经网络(MS-B-CNN)的车型精细识别模型。首先,对双线性卷积神经网络(B-CNN)算法进行改进,提出MS-B-CNN算法对不同卷积层的特征进行了多尺度融合,以提高特征表达能力;此外,还采用基于中心损失函数与Softmax损失函数联合学习的策略,在Softmax损失函数基础上分别对训练集每个类别在特征空间维护一个类中心,在训练过程中新增加样本时,网络会约束样本的分类中心距离,以提高多角度情况下的车型识别的能力。实验结果显示,该车型识别模型在CompCars数据集上的正确率达到了93.63%,验证了模型在多角度情况下的准确性和鲁棒性。

关 键 词:车型精细识别  卷积神经网络  双线性卷积神经网络  中心损失  多尺度
收稿时间:2019-02-13
修稿时间:2019-04-03

Fine-grained vehicle recognition under multiple angles based on multi-scale bilinear convolutional neural network
LIU Hu,ZHOU Ye,YUAN Jiabin. Fine-grained vehicle recognition under multiple angles based on multi-scale bilinear convolutional neural network[J]. Journal of Computer Applications, 2019, 39(8): 2402-2407. DOI: 10.11772/j.issn.1001-9081.2019010133
Authors:LIU Hu  ZHOU Ye  YUAN Jiabin
Affiliation:College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing Jiangsu 210000, China
Abstract:In view of the problem that it is difficult to accurately recognize the type of vehicle due to scale change and deformation under multiple angles, a fine-grained vehicle recognition model based on Multi-Scale Bilinear Convolutional Neural Network (MS-B-CNN) was proposed. Firstly, B-CNN was improved and then MS-B-CNN was proposed to realize the multi-scale fusion of the features of different convolutional layers to improve feature expression ability. In addition, a joint learning strategy was adopted based on center loss and Softmax loss. On the basis of Softmax loss, a category center was maintained for each category of the training set in the feature space. When new samples were added in the training process, the classification center distances of samples were constrained to improve the ability of vehicle recognition in multi-angle situations. Experimental results show that the proposed vehicle recognition model achieved 93.63% accuracy on CompCars dataset, verifying the accuracy and robustness of the model under multiple angles.
Keywords:fine-grained vehicle recognition  Convolutional Neural Network (CNN)  Bilinear Convolutional Neural Network (B-CNN)  center loss  multi-scale  
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号