Abstract: | Polarization imaging can retrieve inaccurate objects’ 3D shapes with fine textures, whereas coarse but accurate depths can be provided by binocular stereo vision. To take full advantage of these two complementary techniques, we investigate a novel 3D reconstruction method based on the fusion of polarization imaging and binocular stereo vision for high quality 3D reconstruction. We first generate the polarization surface by correcting the azimuth angle errors on the basis of registered binocular depth, to solve the azimuthal ambiguity in the polarization imaging. Then we propose a joint 3D reconstruction model for depth fusion, including a data fitting term and a robust low-rank matrix factorization constraint. The former is to transfer textures from the polarization surface to the fused depth by assuming their relationship linear, whereas the latter is to utilize the low-frequency part of binocular depth to improve the accuracy of the fused depth considering the influences of missing-entries and outliers. To solve the optimization problem in the proposed model, we adopt an efficient solution based on the alternating direction method of multipliers. Extensive experiments have been conducted to demonstrate the efficiency of the proposed method in comparison with state-of-the-art methods and to exhibit its wide application prospects in 3D reconstruction. |