首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with the nonstationary dynamic output feedback control problem for a class of discrete‐time Markov jump linear systems (MJLSs) under simultaneous consideration of actuator and sensor saturations. The so‐called nonstationary controllers dominated by two other different piecewise‐stationary Markov chains are introduced, making the designed controllers not only mode‐dependent but also dependent on other variations associated with the mode transitions in the original MJLSs. The sufficient conditions formulated in terms of bilinear matrix inequalities for the H control problem are established such that the resulting closed‐loop system is stochastically stable and achieves a prescribed H noise attenuation level. A suboptimal algorithm with line search is exploited to solve for the associated controller gains. Effectiveness of the developed theoretical results is verified via a numerical example. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
This article studied the global output feedback regulation problem for a class of uncertain nonlinear time delay systems subject to unknown measurement faults on sensors. Different from the existing works, we consider the unknown time‐varying delays on the system states and relax their conservative condition on nonlinear functions. By introducing two novel time‐varying gains, a new global output feedback regulation algorithm is proposed, which ensures control parameters can be chosen flexibly. The proposed linear‐like controller is independent of the unknown time‐varying delays. Moreover, it has a simple structure, which is convenient for the implementation in practice. Based on the Lyapunov stability theory, it is strictly proved that all signals of the resulting closed‐loop system are globally bounded with the designed controller. Finally, a simulation example is presented to illustrate the effectiveness of the proposed output feedback regulation algorithm.  相似文献   

3.
This paper is devoted to the problem of computing control laws for the stabilization of continuous‐time linear time‐varying systems. First, a necessary and sufficient condition to assess the stability of a linear time‐varying system based on the norm of the transition matrix computed over a sequence of successive finite‐time intervals is proposed. A link with a stability condition for an equivalent discrete‐time model is also established. Then, 3 approaches for the computation of stabilizing state‐feedback gains are proposed: a continuous‐time technique, ie, directly derived from the stability condition, not suitable for numerical implementation; a method based on the stabilization of the discrete‐time equivalent model along with a transformation to generate the desired continuous‐time gain; and the computation of stabilizing gains for a set of periodic discrete‐time systems. Finally, by adapting one of the existing methods for the stabilization of periodic discrete‐time systems, an algorithm for the computation of a stabilizing state‐feedback continuous‐time gain is proposed. A numerical example illustrates the validity of the technique.  相似文献   

4.
This paper investigates the static output feedback control problem for Markov jump systems subject to asynchronous mode information and deception attacks. A hidden Markov model is employed to observe the unmeasurable system mode. In this case, the asynchronous phenomenon between the controller and the original system is depicted. By using the mode‐dependent Lyapunov function, a sufficient condition is established such that the resulting closed‐loop system is stochastically mean square exponentially ultimately bounded under randomly occurring deception attacks and external disturbance. Based on this condition, the asynchronous static output feedback controller is designed in view of linear matrix inequalities. Finally, the effectiveness and superiority of the presented method are elaborated via a numerical example and a practical example.  相似文献   

5.
This paper presents a novel approach to the problem of discrete time output feedback sliding‐mode control design. The method described applies to uncertain systems (with matched uncertainties) which are not necessarily minimum phase or relative degree one. A new sliding surface is proposed, which is associated with the equivalent control of the output feedback sliding‐mode controller. Design freedom is available to select the sliding surface parameters to produce an appropriate reduced‐order sliding motion. In order for this to be achieved, a static output feedback condition associated with a certain reduced‐order system obtained from the original plant must be solvable. The practicality of the results are demonstrated through the implementation of the controller on a small DC motor test rig. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we investigate the problem of global output feedback stabilization for a class of planar nonlinear systems under a more general growth condition, which encompasses both lower‐order and higher‐order state growths with output‐dependent rates. For more accurate estimation, two new observers with nonlinear gains are constructed to estimate the states on the lower‐order and higher‐order scales, respectively. The estimates produced from the dual‐observer are used delicately in the output feedback control law with both lower‐order and higher‐order modes. The overall stability of the system is guaranteed by rigorously choosing these nonlinear gains in the control law and the dual‐observer.  相似文献   

7.
This paper investigates the output consensus problem of heterogeneous continuous‐time multiagent systems under randomly switching communication topologies. The switching mechanism is governed by a time‐homogeneous Markov process, whose states correspond to all possible communication topologies among agents. A novel dynamic consensus controller is proposed. The controller gains are designed based on the information of the expectation graph and the solutions to regulator equations. Furthermore, a necessary and sufficient condition is presented for output consensus of the controlled multiagent system in mean square sense. Finally, a simulation example is provided to corroborate the effectiveness of the proposed controller.  相似文献   

8.
The problem of global robust stabilization is studied by both continuous‐time and sampled‐data output feedback for a family of nonminimum‐phase nonlinear systems with uncertainty. The uncertain nonlinear system considered in this paper has an interconnect structure consisting of a driving system and a possibly unstable zero dynamics with uncertainty, ie, the uncertain driven system. Under a linear growth condition on the uncertain zero dynamics and a Lipschitz condition on the driving system, we show that it is possible to globally robustly stabilize the family of uncertain nonminimum‐phase systems by a single continuous‐time or a sampled‐data output feedback controller. The sampled‐data output feedback controller is designed by using the emulated versions of a continuous‐time observer and a state feedback controller, ie, by holding the input/output signals constant over each sampling interval. The design of either continuous‐time or sampled‐data output compensator uses only the information of the nominal system of the uncertain controlled plant. In the case of sampled‐data control, global robust stability of the hybrid closed‐loop system with uncertainty is established by means of a feedback domination method together with the robustness of the nominal closed‐loop system if the sampling time is small enough.  相似文献   

9.
This paper investigates the global finite‐time stabilization for a class of high‐order switched nonlinear systems via the sampled‐data output feedback control. Firstly, we design a continuous‐time output feedback controller for the nominal part via adding a power integrator technique. Based on the homogeneous theory, together with the Gronwall‐Bellman inequality, a sampled‐data output feedback controller is designed with suitable sampling periods to ensure that the closed‐loop system can be globally stabilized in finite time. In the meantime, the proposed control method can be extended to the switched nonlinear systems with an upper‐triangular growth condition. Finally, two examples are presented to illustrate the validity of the proposed control scheme.  相似文献   

10.
This paper investigates the problem of global control for a class of nonlinear systems via output feedback. The system nonlinearities satisfy the homogenous growth condition with unknown growth rate. First, a homogenous observer is constructed for estimating the system state. Then, two novel dynamic gains are presented to deal with the unknown growth rate. Subsequently, by adding a power integrator technique, a dynamic output feedback controller is designed to guarantee that all the signals of the closed‐loop system are bounded and the system states globally converge to origin. Finally, an example is provided to illustrate the validity of the proposed control scheme.  相似文献   

11.
This paper studies the event‐triggered practical finite‐time output feedback stabilization problem for a class of uncertain nonlinear systems with unknown control gains. First, a reduced‐dimensional observer is employed to implement the reconstruction of the unavailable states. Furthermore, a novel event‐triggered output feedback control strategy is proposed based on the idea of backstepping design and sign function techniques. It is shown that the practical finite‐time stability of the closed‐loop systems is ensured by Lyapunov analysis and related stability criterion. Compared with the existing methods, the main advantage of this strategy is that the observer errors and event‐trigger errors can be processed simultaneously to achieve the practical finite‐time stability. Finally, an example is adopted to demonstrate the validity of the proposed scheme.  相似文献   

12.
This paper studies the finite‐time tracking control of nonholonomic systems in chained form with parameter uncertainties, unknown output gains, and mismatched uncertainties. To achieve the finite‐time tracking control of uncertain nonholonomic systems, we propose 2 types of controllers by state and output feedback, respectively. Both of the proposed 2 types of controllers can achieve the finite‐time output tracking control of the nonholonomic systems even in the presence of mismatched uncertainties and/or unknown gains. The effectiveness of our proposed controllers are illustrated with simulation examples.  相似文献   

13.
This paper proposes an output‐feedback sliding mode control design for a class of uncertain multivariable plants with nonlinear disturbances. The approach used here is based on the control parameterization employed in model‐reference adaptive control. The disturbances are allowed to be unmatched and to depend not only on the plant output but also on its unmeas‐urable state. A less restrictive condition on the uncertainty of the high frequency gain matrix is also obtained.  相似文献   

14.
In this paper, the problem of global state regulation by output feedback is investigated for a class of uncertain nonlinear systems satisfying some relaxed upper‐triangular‐type condition. Using a linear dynamic gain observer with two dynamic gains and introducing two appropriate change of coordinates, we give a constructive design procedure for the linear‐like output feedback stabilizing controller. It is proved that the proposed controller globally regulates all the states of the uncertain system and maintains global boundedness of the closed‐loop system. An example is provided to demonstrate the effectiveness of the proposed design scheme. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
This article addresses the output feedback control for discrete‐time Markov jump linear systems. With fully known transition probability, sufficient conditions for an internal model based controller design are obtained. For the case where the transition probabilities are uncertain and belong to a convex polytope with known vertices, we provide a sufficient LMI condition that guarantees the norm of the closed‐loop system is below a prescribed level. That condition can be improved through an iterative procedure. Additionally, we are able to deal with the case of cluster availability of the Markov mode, provided that some system matrices do not vary within a given cluster, an assumption that is suitable to deal with packet dropout models for networked control systems. A numerical example shows the applicability of the design and compares it with previous results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
An output feedback regulation problem is considered for a class of high‐order feedforward nonlinear systems with delay in the input under measurement sensitivity. The key features are that the considered systems have uncertain high‐order feedforward nonlinearity and unknown time‐varying delay in the input. Then, the controller is supposed to be engaged where the output feedback information is distorted by measurement sensitivity. Our proposed controller has two gains—fixed and adaptive gains. The fixed gain is first designed to compensate for measurement sensitivity, and the adaptive gain is next utilized to dominate both unknown input delay and uncertain high‐order feedforward nonlinearity. Simulation examples are given to highlight the advantage of our control scheme.  相似文献   

17.
This paper addresses the finite horizon H control problem for a class of discrete‐time nonlinear Markov jump systems with multiplicative noise and nonlinear feedback device. The system nonlinearity occurs in a random way specified by a Bernoulli process, whereas the actuator and sensor nonlinearities are restricted to a sector region. Both the state and the dynamic output feedback H controllers are devised in terms of difference LMIs. The proposed approach not only allows the resulting system to achieve a prescribed disturbance attenuation level, but also enables the output of actuator/sensor to meet the designated sector condition. Moreover, it is also shown that our approach is well‐adapted for dealing with the discrete‐time Markov jump systems with saturated actuator and sensor. Finally, a backward iterative algorithm is provided to solve the obtained difference LMIs and a numerical example is presented to verify the efficiency of the theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
This paper studies the problem of using a sampled‐data output feedback controller to globally stabilize a class of nonlinear systems with uncertain measurement and control gains. A reduced‐order observer and a linear output control law, both in the sampled‐data form, are designed without the precise knowledge of the measurement and control gains except for their bounds. The observer gains are chosen recursively in a delicate manner by utilizing the output feedback domination approach. The allowable sampling period is determined by estimating and restraining the growth of the system states under a zero‐order‐hold input with the help of the Gronwall–Bellman Inequality. A DC–DC buck power converter as a real‐life example will be shown by numerical simulations to demonstrate the effectiveness of the proposed control method.  相似文献   

19.
This paper deals with an output‐feedback finite‐time control problem for a class of nonlinear uncertain systems whose relative degree is affected by an uncertain system parameter and is therefore unknown at the stage of control design. We show that an existing second‐order sliding mode control algorithm can address successfully the control task of a finite‐time output‐feedback stabilization when the uncertain relative degree is equal to 1 or 2. We derive constructive tuning rules for the control parameters and show its effectiveness by using computer simulations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
This paper deals with the problem of global leader‐following consensus of a group of discrete‐time general linear systems with bounded controls. For each follower agent in the group, we construct both a bounded state feedback control law and a bounded output feedback control law. The feedback laws for each input of an agent use a multi‐hop relay protocol, in which the agent obtains the information of other agents through multi‐hop paths in the communication network. The number of hops each agent uses to obtain its information about other agents for an input is less than or equal to the sum of the number of real eigenvalues on the unit circle and the number of pairs of complex eigenvalues on the unit circle of the subsystem corresponding to the input, and the feedback gains are constructed from the adjacency matrix of the communication network. We show that these control laws achieve global leader‐following consensus when the communication topology among follower agents forms a strongly connected and detailed balanced directed graph and the leader is a neighbor of at least one follower agent. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号