首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
玻璃钢复合材料拉-拉疲劳性能试验方法及其改进   总被引:5,自引:4,他引:1  
采用热压成型方法制备连续玻璃纤维增强热塑/热固性复合材料(GF/EP/PC),并与GF/PC复合材料进行力学性能测试比较和SEM照片观测分析了影响复合材料力学性能的因素.研究结果表明,GF/EP/PC复合材料的拉伸弹性模量与弯曲弹性模量分别为GF/PC复合材料的16.4倍和8.8倍,拉伸强度和弯曲强度分别提高了1.7倍和3.7倍;结合其力学破坏形貌照片,分析了纤维和树脂的粘接情况和材料的破坏模式以及PC树脂与芯层GF/EP复合材料的粘接情况.  相似文献   

2.
纳米氧化铝/环氧树脂/二氨基二苯砜复合体系性能研究   总被引:1,自引:1,他引:0  
对纳米氧化铝(nano-Al2O3)/环氧树脂(EP)/二氨基二苯砜(DDS)体系的性能进行了研究,考察了nano-Al2O3用量及制备工艺对复合材料力学性能的影响,并通过扫描电镜(SEM)观察了nano-Al2O3/EP/DDS复合材料的断面形貌。结果表明:当w(nano-Al2O3)=5份时,复合材料的力学性能相对最高;经偶联剂和超声波分散处理后制取的nano-Al2O3/EP/DDS复合材料,其力学性能最好,高温剪切强度提高了4.01MPa,弯曲强度提高了7.63MPa,弯曲挠度提高了0.65mm,拉伸强度提高了9.30MPa,断裂伸长率提高了2.04%;SEM分析结果表明,一定量的nano-Al2O3可以明显提高EP的韧性。  相似文献   

3.
含苯炔基侧链的聚酰亚胺树脂及其复合材料   总被引:2,自引:1,他引:1  
采用联苯酐(3,4′-BPDA)与4,4′-二氨基二苯醚(4,4-ODA),3,5-二氨基-4′-苯炔基二苯甲酮(DPEB),苯炔基苯酐(PEPA)制备了不同分子质量的聚酰亚胺树脂。通过流变分析,热重分析,红外光谱,动态热力学分析及静态力学性能测试等研究了分子结构,分子质量等因素对聚酰亚胺树脂耐热性和力学性能的影响。结果表明,合成的聚酰亚胺树脂具有优异耐热性能和较高的韧性,固化后树脂的玻璃化转变温度为379℃,5%热失重温度高于550℃,并且浇注体的拉伸强度是61 MPa,断裂伸长率是6.2%.碳纤维复合材料的室温弯曲强度为1 850 MPa,层间剪切强度为84 MPa,316℃时弯曲强度为946 MPa,剪切强度为46 MPa,具有良好的高温力学保持率。  相似文献   

4.
双马来酰亚胺改性芳香胺固化环氧树脂的研究   总被引:6,自引:0,他引:6  
针对环氧树脂(EP)耐湿热性差和韧性不足的缺点,用双马来酰亚胺(BMI)对常用的芳香族二元胺(DA)固化剂进行扩链改性。研究了改性4,4′-二氨基二苯砜(DDS)固化剂对7种环氧树脂固化物的力学性能、热性能和工艺性能的影响,优化出一种BMI改性环氧树脂基体。改性树脂浇铸体韧性好、耐热性高,断裂韧性GIC195J/m2,断裂延伸率3.37%,Tg218℃,135℃弯曲强度保持率72.2%,沸水饱和吸湿率3.3%;其碳纤维复合材料综合性能良好、断裂韧性高、耐湿热性好,横向拉伸强度75.5MPa,层间断裂韧性GIC267J/m2,135℃湿态弯曲强度保持率70.5%,132℃湿态层间剪切强度保持率49.5%。  相似文献   

5.
以四官能度AG-80(4,4′-二氨基二苯甲烷环氧树脂)作为基料,分别选用ZH-433(液态改性胺)、DDS(二氨基二苯砜)和ZH-433/DDS作为固化剂,制备相应的EP(环氧树脂)灌封胶。研究结果表明:当m(ZH-433)∶m(DDS)=10∶3、w(ZH-433/DDS复合固化剂)=115%(相对于AG-80质量而言)时,EP灌封胶的综合性能相对最好,其弯曲强度为146.72 MPa、拉伸强度为37.37 MPa、耐热性良好且吸水率小于0.20%。  相似文献   

6.
以环氧树脂(EP)、双马来酰亚胺(BMI)、4,4’-二氨基二苯砜(DDS)和短切碳纤维(SCF)等为主要原料制备了EP/BMI/DDS/SCF复合材料,并研究了SCF添加量对复合材料力学性能和热性能的影响。结果表明,当SCF添加量为0.25 %(质量分数,下同)时,EP/BMI/DDS/SCF复合材料的力学性能提高最大,其拉伸强度、弯曲强度、弯曲模量和缺口冲击强度比未添加SCF时的EP/BMI/DDS复合材料分别提高了48.52 %、32.15 %、25.77 %以及150.91 %;此外,SCF的加入有助于提高复合材料的热性能。  相似文献   

7.
连续玻璃纤维增强热塑/热固性复合材料力学性能研究   总被引:3,自引:1,他引:2  
采用热压成型方法制备连续玻璃纤维增强热塑/热固性复合材料(GF/EP/PC),并与GF/PC复合材料进行力学性能测试比较和SEM照片观测分析了影响复合材料力学性能的因素。研究结果表明,GF/EP/PC复合材料的拉伸弹性模量与弯曲弹性模量分别为GF/PC复合材料的16.4倍和8.8倍,拉伸强度和弯曲强度分别提高了1.7倍和3.7倍;结合其力学破坏形貌照片,分析了纤维和树脂的粘接情况和材料的破坏模式以及PC树脂与芯层GF/EP复合材料的粘接情况。  相似文献   

8.
将甲基二笨乙炔基硅烷(MDPES)、环氧树脂(EP)、聚苯并咪唑(PBI)共混改性制得碳纤维复合材料,结果表明:合适的共混比例能使MDPES/EP/PBI树脂碳纤维复合材料具有较好的界面粘结性能,同时具有良好的力学性能及耐热性能.当MDPES∶EP∶PBI=5∶5∶1时,层间剪切强度为49.2 MPa,常温下的拉伸强度1263.7 MPa,弯曲强度为1191.9 MPa,200 ℃弯曲强度保留率达到78.9%.  相似文献   

9.
以双酚S为原料,采用溶剂法合成了一种含砜基的苯并恶嗪(BOZ–S),并用不同长度的高性能维纶短切纤维(PVAF)为增强材料,通过预浸料模压成型制备出BOZ–S改性酚醛树脂(PF)模塑料。利用傅里叶变换红外光谱仪、核磁共振仪、差示扫描量热仪以及扫描电子显微镜等分别对BOZ–S的单体结构、PF/BOZ–S改性体系的固化特性、改性PF模塑料的力学性能、热性能以及冲击断口进行了分析研究。结果表明,成功合成出了预期结构的BOZ–S,且固化时存在两种放热反应;改性树脂体系的各项性能与纯PF相比均有明显提升,且纤维的长度越长,模塑料的力学性能提升越大,其中PF/BOZ–S质量比为80/20、纤维长度为36 mm时,体系的综合性能最佳,冲击强度和弯曲强度分别为88.4 k J/m~2和175.9 MPa,弯曲弹性模量达到8.8 GPa,马丁耐热温度为164.3℃。  相似文献   

10.
以聚醚聚四氢呋喃醚二醇(PTMG)或聚丙二醇(PPG)与异氰酸酯4,4′-二苯基甲烷二异氰酸酯(MDI)或2,4-甲苯二异氰酸酯(TDI)作原材料合成了预聚体;以3,3'-二氯-4,4′-二胺基二苯甲烷(MOCA)为扩链剂制备了PU弹性体;采用手糊成型方法制备了聚氨酯(PU)/玻璃纤维(GF)复合材料。研究了2种预聚体制备的PU弹性体力学性能、玻璃纤维厚度和层数以及复合材料密度对PU/GF复合材料力学性能的影响,以及GF与PU弹性体的粘结强度。结果表明,MDI/MOCA-PU比TDI/MOCA-PU的力学性能优异;随着玻璃纤维厚度和层数的增加,复合材料力学性能提高;密度对PU/GF复合材料的拉伸强度有显著影响;用硅烷偶联剂处理过的玻璃纤维可提高复合材料剥离强度。  相似文献   

11.
《粘接》2017,(9)
以双酚A型环氧树脂为基体,3,3'-二乙基-4,4'-二氨基二苯甲烷(DEDDM)为固化剂,热塑性树脂为增韧剂,采用中温固化热熔胶膜法制备环氧树脂预浸料,并以玻璃纤维为增强体制备玻璃纤维/环氧树脂复合材料。结果表明,环氧树脂固化物及其复合材料的力学性能和热性能均随增韧剂的加入呈上升趋势。当增韧剂质量分数为20%时,环氧固化物的弯曲和冲击强度分别为122.4MPa和23.8 kJ/m~2,较纯环氧树脂分别提高50%和154%;玻璃化转变温度(T_g)从102℃提升到123℃;增韧剂/玻璃纤维/环氧树脂复合材料的弯曲强度和层间剪切强度为636.5 MPa和54.9 MPa,T_g为130℃。扫描电子显微镜(SEM)分析表明,玻璃纤维和环氧树脂具有较好的界面粘接性能。  相似文献   

12.
以环氧树脂为基体,短切玻璃纤维和玻璃纤维布为增强材料,通过RTM工艺制备了玻璃纤维增强环氧树脂(GF/EP)复合材料,并研究了RTM工艺制备玻璃纤维布增强环氧树脂(L-GF/EP)和短切玻璃纤维增强环氧树脂(S-GF/EP)复合材料的拉伸和弯曲性能,分析了开孔对两种复合材料拉伸性能的影响。结果表明:在拉伸过程中,开孔试样因孔边产生的应力集中,导致其拉伸强度与无孔试样相比下降了30%左右;玻纤铺层类型的不同对复合材料的力学性能具有显著影响;L-GF/EP复合材料内部结构完整,在载荷作用下,复合材料的弯曲断裂呈现一定的假塑性断裂模式,达到弯曲极限挠度值后,出现一定程度的回弹现象,其力学性能优于S-GF/EP复合材料。  相似文献   

13.
采用热压成型工艺制备单一碳纤维、碳纤维/玻璃纤维(CF/GF)和碳纤维/Kevlar纤维(CF/KF)均质和非均质混杂增强环氧树脂基复合材料,通过三点弯曲、层间剪切、低速冲击及冲后压缩性能测试,研究纤维组分、混杂结构和混杂比对复合材料力学性能及低速冲击性能的影响。结果表明,单一碳纤维复合材料力学性能最佳,其弯曲模量、弯曲强度和层间剪切强度分别达到66.16 GPa、830.35 MPa和42.73 MPa,而CF/GF混杂结构性能总体优于CF/KF混杂结构,内层混杂结构性能优于外层混杂结构;单一碳纤维复合材料低速冲击性能较差,其冲击损伤凹坑深度最高可达混杂结构的3.5倍,对应的分层阈值为2 723.53 N;CF/KF均质混杂结构的剩余压缩强度最大,而单一碳纤维复合材料则最小,对应数值分别为0.92和0.79。  相似文献   

14.
采用溶液接枝聚合方法,在偶联剂处理后的玻璃纤维(GF)表面接枝(丙烯腈/丁二烯/苯乙烯)共聚物(ABS)而形成一层有极性的柔性"可变形层",以提高酚醛树脂/GF复合材料的界面粘结性能.采用傅立叶变换红外光谱仪、能量色散光谱仪和扫描电子显微镜研究了接枝前后GF表面官能团、元素含量和表面微观形貌变化.研究了ABS接枝率对酚醛树脂/GF复合材料力学性能的影响.结果表明,ABS成功地接枝到GF表面;酚醛树脂/GF复合材料的力学性能随着ABS接枝率的提高先升高后降低:当ABS的接枝率为2.8%、3.0%、4.3%、4.7%时,酚醛树脂/GF的层间剪切强度、拉伸强度、弯曲强度、冲击强度分别达到最高,为70 MPa、620 MPa、450 MPa、226 kJ/m2.  相似文献   

15.
本文以环氧树脂为基体,经改性过的短切玻璃纤维为增强材料,制备了玻璃纤维增强环氧树脂(GF/EP)复合材料。探究了玻璃纤维与环氧树脂配比、固化条件对GF/EP复合材料力学性能的影响。结果表明:当玻纤用量为20%、固化温度为120℃、固化时间为3.0 h时制备的GF/EP复合材料拉伸强度约为38.52 MPa、冲击强度约为6.46k J/m2;GF/EP复合材料经60℃、5%的食盐水浸泡48 h后力学性能下降,SEM显示纤维与树脂的粘结界面经腐蚀后被破坏。  相似文献   

16.
采用自制的专用处理剂处理聚对苯撑苯并双恶唑(PBO)纤维,研究了PBO纤维增强环氧树脂(EP)(EP/PBO)复合材料的配方体系与制备工艺参数.研究表明,采用EP与4,4-二胺基二苯甲烷(DDS)混合制备的复合材料的剪切强度最高.控制预浸胶带的含胶量为35%~37%,在适宜的缠绕工艺参数与固化条件下,制备的EP/PBO复合材料的NOL环剪切强度达26.28~29.32 MPa.  相似文献   

17.
以不饱和磷酸酯(UPE)与玻璃纤维(GF)为原料,利用层压成型工艺制备了聚不饱和磷酸酯(PUPE)/GF复合材料,采用差示扫描量热仪分析了PUPE的固化过程,研究了GF/PUPE质量比、GF铺层层数以及热压压力对PUPE/GF复合材料力学性能和阻燃性能的影响。通过热重分析仪研究了PUPE与PUPE/GF复合材料的热稳定性。结果表明:PUPE/GF复合材料最佳成型工艺参数为热压温度120℃、热压压力10.0 MPa、GF/PUPE质量比10/11、GF铺层层数19层、固化时间20 min,制得的PUPE/GF复合材料具有良好的力学性能,拉伸强度与弯曲强度分别达到了171.7 MPa和84.8 MPa,同时具有优异的阻燃性能,且PUPE/GF复合材料在高温下的热稳定性明显提高。  相似文献   

18.
界面结合性能对制备性能优异的复合材料具有重要意义。通过对双环戊二烯(DCPD)与玻璃纤维(GF)的浸润性进行研究,将其与等效环氧树脂比较,开发了一种与玻璃纤维具有较好结合性的DCPD树脂,用其制备出一种综合性能优异的玻璃纤维增强PDCPD基复合材料。通过动态接触角、90?拉伸强度和层间剪切强度实验,测定了不同树脂与玻璃纤维之间的粘附力,提供了玻璃纤维与不同树脂界面性能差异。结果表明,SCB-600 DCPD树脂与玻璃纤维的结合性较优,动态接触角为60.35??0.3?,90?拉伸强度为(42.3?1.6) MPa,层间剪切强度为(61.3?3.2) MPa,与1564环氧树脂相当。进一步优化了DCPD树脂质量分数,当树脂质量分数为30%?2%时,SCB-600 DCPD复合材料具有相对最优的力学性能,材料拉伸强度为(1180.1?4.1) MPa,弯曲强度为(1060.4?4.6) MPa,缺口冲击强度为(145.3?4.8) KJ/m2。其弯曲和拉伸强度与玻璃纤维增强环氧树脂基复合材料的性能基本相当,但缺口冲击强度优于1564环氧树脂。  相似文献   

19.
以聚氯乙烯(PVC)为基体、热塑性聚氨酯弹性体(PUR–T)为增韧剂、连续玻璃纤维(GF)为增强剂,通过熔体浸渍挤出工艺制备高性能PVC复合材料,并对其力学性能、耐热性能和动态力学性能进行研究。结果表明,随着PUR–T或连续GF含量增加,复合材料的力学性能和耐热性能均得到提高,当PUR–T/PVC质量比为2/8,连续GF质量分数为30%时,复合材料的拉伸强度、缺口冲击强度、弯曲强度、弯曲弹性模量、维卡软化温度分别为83.42 MPa,19.81 k J/m2,106.33 MPa,8 823.36 MPa和74.1℃;随着连续GF含量增加,复合材料的储能模量和玻璃化转变温度提高,损耗因子降低;扫描电子显微镜测试结果表明连续GF在PVC中保持了较长的长度,分散性良好。  相似文献   

20.
高性能、低成本复合材料用环氧体系的研究   总被引:1,自引:0,他引:1  
通过凝胶化测试和示差扫描量热分析(DSC)研究了CYD128环氧树脂/部分钝化间苯二甲胺固化体系的反应特性,测试了该体系浇铸体的力学性能和耐热性。设计了一种新型低成本真空辅助传递模塑(VARTM)成型工艺并研究了该成型工艺对复合材料力学性能的影响。结果表明,浇铸体弯曲强度可达131.0 MPa,拉伸强度71.8 MPa,拉伸模量3.1 GPa,冲击强度37.5 kJ/m2,玻璃化温度(Tg)98.1℃。使用新工艺得到的复合材料力学性能优异,其中连续玻璃纤维、连续碳纤维增强复合材料弯曲强度分别达到950.2 MPa、1 097.4 MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号