首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以HR3C合金成分为基础,通过调控Cr、Ni含量和添加1.5%,2.5%和3.5% (质量分数) 的Al制备了Fe-22Cr-25Ni型含铝奥氏体耐热钢,并研究了合金的高温抗氧化性能。利用SEM、EDS和XRD对含铝奥氏体钢700、800和900 ℃氧化后的氧化膜组成、结构进行了表征。结果表明:22Cr-25Ni-2.5Al和22Cr-25Ni-3.5Al含铝奥氏体耐热钢在700和800 ℃下具有优异的抗高温氧化性能。氧化后表层形成了连续致密的Al2O3保护膜,提高了其高温抗氧化性能。3种耐热钢经900 ℃氧化时形成外层为Cr2O3和MnCr2O4的复合氧化层,且氧化层下存在Al2O3内氧化物和AlN析出相,不能对基体起到有效保护作用。  相似文献   

2.
采用D/MAX-2500型X射线衍射仪、OLYMPUS-BHM型金相显微镜、PHLIPS-XL30/TMP型扫描电子显微镜等试验设备,以Cr、Al和Si元素作为耐热钢的主要合金元素,与此同时添加适量的稀土元素,试制了一种具有较好高温抗氧化性能且更为经济的新型铁素体耐热合金35Cr18Al3Si2RE。研究结果表明,大量的铁素体稳定元素Cr、Al、Si的加入,使新合金形成单相铁素体组织;新合金35Cr18Al3Si2RE高温氧化膜主要由Cr2O3、Al2O3、Fe2O3、SiO2等氧化物组成,氧化膜排布十分致密且分布十分均匀;新合金35Cr18Al3Si2RE的氧化增重速率与目前常用的ZG35Cr24Ni7SiN相比有明显降低,表现出了较好的高温抗氧化性能。  相似文献   

3.
在00Cr19NbTi不锈钢基础上,通过稀土Ce微合金化的方法制备了三种船舶排气岐管用不锈钢,研究了稀土元素Ce对不锈钢在连续高温环境下的抗高温氧化行为的影响,并分析了其作用机理。结果表明,稀土Ce微合金化的不锈钢在980 ℃高温不同氧化时间下的氧化物主要由Mn1.5Cr1.5O4、Cr1.3Fe0.7O3、Cr2O3 和SiO2组成,氧化物层的相组成随着氧化时间变化稳定性较高;稀土Ce元素的添加可以增加表面氧化物层中Cr的含量,提高Cr2O3氧化膜层的致密性,从而改善排气岐管不锈钢的高温抗氧化性能。  相似文献   

4.
Al对ZG40Cr25Ni20抗磨耐热钢高温抗氧化性的影响   总被引:1,自引:0,他引:1  
在ZG40Cr25Ni20抗磨耐热钢中加入不同含量的Al,在900℃和1100℃下分别进行循环高温抗氧化性试验。通过不同温度下氧化增重测量、氧化动力学分析,以及试验后试样形貌观察,得出了Al对ZG40Cr25Ni20高温抗氧化性能的影响规律,结果表明适量的Al能明显提高ZG40Cr25Ni20的高温抗氧化性。  相似文献   

5.
对Ti50Ni44Al6和Ti50Ni41Al6Nb3合金在1073K循环氧化行为的测试表明,Nb的加入显著改善合金的高温抗氧化性能.Ti50Ni44Al6合金在1073K经过100h循环氧化后形成外层以TiO2为主并含有少量Al2NiO4、内层为TiNiO3的氧化层,合金的氧化动力学服从线性规律;Ti50Ni41Al6Nb3合金生成以TiO2为主的氧化膜,在外氧化层下面形成了一层富Nb和Al的复合氧化物,显著阻碍氧以及合金元素的扩散,降低了合金的氧化速率,合金高温氧化动力学遵从抛物线规律.  相似文献   

6.
介绍了采用氧化增重法对4种耐热材料进行高温抗氧化性能的对比试验,得出以下结论:(1)QTANi35Si5Cr2材料抗高温氧化性能较差,ZG40Cr25Ni13Nb2Si1和ZG40Cr25Ni12Si2材料抗高温氧化性能较好,ZG40Cr25Ni20Si2材料抗高温氧化性能最优;(2)ZG40Cr25Ni13Nb2Si1、ZG40Cr25Ni12Si2、QTANi35Si5Cr2材料的氧化层由外到内可分2层,一层为富含Fe、O元素的外氧化膜,另一层为富含Cr、Mn、O元素的内氧化膜,ZG40Cr25Ni20Si2材料只观察到一层富含Cr、Mn、O元素的氧化膜,4种材料的氧化层与基体间为一层富含Si元素的过渡区;(3)4种耐热材料氧化层大部分由MnxCryOz氧化物和CrxFeyOz氧化物构成;(4)奥氏体系耐热铸造材料中w(Ni)量越高,越有利于Cr元素的扩散,进而促进Cr2O3保护膜的形成。  相似文献   

7.
介绍了采用氧化增重法对4种耐热材料进行高温抗氧化性能的对比试验,得出以下结论:(1)QTANi35Si5Cr2材料抗高温氧化性能较差,ZG40Cr25Ni13Nb2Si1和ZG40Cr25Ni12Si2材料抗高温氧化性能较好,ZG40Cr25Ni20Si2材料抗高温氧化性能最优;(2)ZG40Cr25Ni13Nb2Si1、ZG40Cr25Ni12Si2、QTANi35Si5Cr2材料的氧化层由外到内可分2层,一层为富含Fe、O元素的外氧化膜,另一层为富含Cr、Mn、O元素的内氧化膜,ZG40Cr25Ni20Si2材料只观察到一层富含Cr、Mn、O元素的氧化膜,4种材料的氧化层与基体间为一层富含Si元素的过渡区;(3)4种耐热材料氧化层大部分由Mn_xCr_yO_z氧化物和Cr_xFe_yO_z氧化物构成;(4)奥氏体系耐热铸造材料中w(Ni)量越高,越有利于Cr元素的扩散,进而促进Cr_2O_3保护膜的形成。  相似文献   

8.
研究了高Cr/Al比和中Ta含量的DZ445镍基高温合金在900℃下300~2600 h的氧化行为。结果表明,900℃氧化≥500 h,氧化膜呈现多层结构,最外层氧化物相为NiCr2O4、Cr2O3和TiO2,次外层为CrTaO4和TiO2,次内层为Al2O3、NiCr2O4和NiO,最内层主要是Al2O3。次外层和次内层的出现使得合金氧化速率降低,表现为动力学方程的指数大幅度增加和氧化速率常数急剧下降。这2层的出现也使得合金氧化机理发生转变,次外层形成后氧化过程由合金元素Cr、Ti、Ni向外扩散转变为由Al的向外扩散和O的向内扩散所控制;次内层形成后,氧化过程转变为Ni、Cr的向外扩散和O的向内扩散所控制。这种多层氧化膜结构使得DZ445合金表现出优异的抗氧化能力。  相似文献   

9.
采用放电等离子烧结法(SPS)制备了Nb-20Si-5Al-xTi(x=0,18,20,22,摩尔分数)超高温合金,研究了Ti加入量对Nb-20Si-5Al合金的室温断裂韧度和高温抗氧化性的影响。结果表明,随着Ti加入量的增加,超高温合金的相组成由Nbss、Nb5Si3和Al3Nb相转变成为Nbss、(Nb,Ti)5Si3和Ti相。Ti能明显改善Nb-20Si-5Al超高温合金的断裂韧度和高温抗氧化性能,随着Ti加入量的增加均先提高然后降低,在Ti加入量为20%时,合金断裂韧度最大,为7.41 MPa·m1/2,相比未加Ti时提高了约56.9%,其高温氧化速率最低,为0.72×10-4g2/(cm4·h)。添加Ti元素后,其氧化产物中出现Ti2Nb10O29、TiNb2O7、TiO2等,可以提高其氧化膜的致密性,从而提高高温抗氧化性能。  相似文献   

10.
抗高温磨损高铬铸铁的研究   总被引:3,自引:0,他引:3  
经Mo、B、V、Ti合金化和RE变质处理的高铬铸铁,具有优良的抗高温磨损性能和强韧性,用于制造筛分高温烧结矿的振动筛筛板,使用寿命比ZG30Cr18Mn12Si2N耐热钢筛板提高2倍以上。多元高铬铸铁筛板制造工艺简单,成本低,值得在筛分领域推广使用。  相似文献   

11.
利用氧化增量法测得新型Cr18Ni31Al合金的不同温度下的高温氧化动力学曲线,使用X射线衍射仪(XRD)、扫描电镜(SEM)和能谱仪(EDS)对合金表面高温氧化膜的形貌及组成进行了分析和检测。结果表明,新型Cr18Ni31Al合金的高温氧化动力学曲线为Δm。700 ℃和800 ℃氧化后,氧化膜均由Fe2O3和NiCr2O4组成;900 ℃氧化后,氧化膜表面有尖晶石结构的Fe(Cr, Al)2O4氧化物生成。atn  相似文献   

12.
高温工况下一种耐热耐磨新材料的组织、性能研究   总被引:3,自引:0,他引:3  
选择高温综合性能好、成本高的ZG40Cr25Ni20作为对比材料,以适量的Mn、Si、N等合金元素代替部分Ni合金研制了一种新型耐热耐磨材料;比较了两种材料热处理后的显微组织,并进行了高温磨料磨损和高温抗氧化性能对比试验;结果表明,新材料中适量的Mn、Si、N等合金元素可代替部分Ni合金促进形成奥氏体组织,且高温磨料磨损抗力和高温抗氧化性能与对比材料接近,在实际工况中代替ZG40Cr25Ni20是切实可行的。  相似文献   

13.
奥氏体不锈钢热浸镀铝层的抗氧化特性   总被引:3,自引:2,他引:1  
为进一步提高奥氏体不锈钢0Cr18Ni9Ti的高温使用性能,对该钢进行了热浸镀铝处理和抗高温氧化性能的试验.试验结果表明:经热浸镀铝处理后,奥氏体不锈钢0Cr18Ni9Ti的抗高温氧化性能明显得到改善,其热浸镀铝层的抗高温氧化行为符合抛物线规律.1 000℃抗氧化试验表明:在高温氧化过程中,表层Al2O3氧化膜及扩散层中的金属间化合物FeAl相和β-NiAl相起到抗氧化作用.  相似文献   

14.
采用X射线衍射(XRD)、扫描电镜(SEM)及能谱分析(EDS)等方法对三种Fe-Cr基耐热钢在1250℃的抗氧化性能进行了分析和研究.结果发现,1250℃下,ZG35Cr27Ni7Si耐热钢和ZG35Cr24Ni7SiN耐热钢具有较好的抗氧化性能,其原因是具有致密且连续的氧化膜,并且其氧化膜与基材结合得较为密实,不易剥落,保护了基材.ZG35Cr24Ni7SiN耐热钢的抗氧化性能最好,ZG35Cr24Ni7N耐热钢最差.  相似文献   

15.
为了研究Ti6Al4V钛合金微弧氧化膜层的抗高温氧化性能,在硅酸钠电解液中添加纳米铌(Nb)颗粒制备了Nb2O5/TiO2复合膜层。采用扫描电子显微镜(SEM)和X射线衍射仪(XRD)分析膜层的微观结构和相组成。结果表明:随着纳米Nb浓度增加,膜层表面微孔直径增大、数量减小,膜层中Nb元素含量逐渐增加至5at%,膜层厚度由42.28μm增加至55.48μm;膜层由锐钛矿型TiO2、金红石型TiO2、Al2TiO5、Nb2O5及Nb-Ti化合物组成,金红石型TiO2峰值和Nb2O5峰值逐渐上升;试样增重由基体10.25 mg/cm2降低至Nb浓度为6 g/L制备膜层的2.281 mg/cm2,平均氧化速率由2.8472×10-5 mg·cm-2  相似文献   

16.
形状记忆合金Ti44Ni47Nb9的抗高温氧化性能   总被引:6,自引:0,他引:6  
采用恒温氧化法,结合X射线衍射(XRD)、扫描电镜(SEM)及能谱分析(EDS)等手段,研究了Ti44Ni47Nb9形状记忆合金(SMA)的抗高温氧化性能.结果表明,Ti44Ni47Nb9合金在450℃下轻微氧化;600—800℃高温下氧化增重曲线符合抛物线规律,氧化膜外层主要是金红石型TiO2,中间为富Nb层,内层为富Ni的Ni3Ti层.研究表明,Ti44Ni47Nb9合金中的Nb元素减少了TiO2中的氧空位,形成的富Nb阻挡层,能有效地抑制Ti元素的外扩散,同时也阻挡了氧的内扩散,降低了氧的固溶度,从而抑制了Ni3Ti层中Ni元素的进一步氧化,提高了合金的抗高温氧化性能.  相似文献   

17.
针对软第二相Cr稍微降低Laves相NbCr2合金的1200℃抗氧化性,采用Al、Si及Y多元合金化来提高Cr-20Nb合金的高温抗氧化性能。结果表明,多元合金化的Cr-20Nb合金1100℃及1200℃抗氧化性均好于加入单一合金化的及纯Cr-20Nb合金,并随着Si合金元素含量增加,Cr-20Nb合金的氧化增重变小,抗氧化性变好;SEM结果表明,添加合金元素后,氧化膜与基体的粘附性得到了明显提高。  相似文献   

18.
在00Cr19Nb Ti不锈钢基础上,通过稀土Ce微合金化的方法制备了三种船舶排气岐管用不锈钢,研究了稀土元素Ce对不锈钢在连续高温环境下的抗高温氧化行为的影响,并分析了其作用机理。结果表明,稀土Ce微合金化的不锈钢在980℃高温不同氧化时间下的氧化物主要由Mn1.5Cr1.5O4、Cr1.3Fe0.7O3、Cr2O3和Si O2组成,氧化物层的相组成随着氧化时间变化稳定性较高;稀土Ce元素的添加可以增加表面氧化物层中Cr的含量,提高Cr2O3氧化膜层的致密性,从而改善排气岐管不锈钢的高温抗氧化性能。  相似文献   

19.
采用电弧离子镀技术在镍基高温合金K465上制备了(MCrAlY+AlSiY)复合涂层,分析了复合涂层的组织及结构,对比研究了NiCoCrAlYSiB单一涂层及(NiCoCrAlYSiB+AlSiY)复合涂层分别在1000及1100℃时的恒温氧化行为和从1000℃到室温的循环氧化行为.结果表明:退火后复合涂层外层主要由β-(Ni,Co)Al相及少量σ-NiCoCr和Cr3Si相组成,内层主要是富Cr相及少量β-(Ni,Co)Al相.氧化过程中由于Al的消耗,单一涂层表面生成了尖晶石和NiO,而复合涂层中的β-(Ni,Co)Al相退化成γ/γ′相,提供Al源支持表面Al2O3膜的形成和修复,从而提高了抗高温氧化性能.  相似文献   

20.
以Nb、Si、CNTs和Al粉末为原料,采用放电等离子烧结法(SPS)原位合成了Nb-20Si-2 mass%CNTs-xAl(x=0、1、2、3、4 mass%)复合材料。利用扫描电镜(SEM)、电子探针微区分析(EPMA)和X射线衍射(XRD)等对复合材料的组织结构进行了分析,研究了Al对CNTs增强Nb/Nb5Si3复合材料的组织和性能的影响。结果表明:Al能部分固溶于Nb5Si3和Nbss相中,多余的Al会与Nb反应生成AlNb3相,较均匀地分布中Nb5Si3相中,并大部分聚集在Nb/Nb5Si3的界面处。Al元素的加入能明显改善Nb/Nb5Si3复合材料的断裂韧性,随着Al含量的增加,复合材料的断裂韧性先升高后降低,其中Al含量为2 mass%时达到最大值,即6.94 MPa·m^1/2,相对于未加时提高了约56.9%。同时Al元素还能有效降低Nb/Nb5Si3复合材料高温氧化速度,提高高温抗氧化性能,而Al元素的加入量越高,其高温抗氧化性能越好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号