首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 113 毫秒
1.
简述了对尼龙66(PA66)进行阻燃的基本途径,详细阐述了适用于PA66的各类阻燃体系,如卤系阻燃剂、磷系阻燃剂、氮系阻燃剂及无机填料型阻燃剂等对PA66的阻燃效果及研究现状,并展望了阻燃PA66的发展趋势。指出无卤阻燃剂和环境友好型阻燃剂是未来阻燃PA66的重点发展方向,通过包覆、微胶囊化、母粒化等技术手段开发高效阻燃剂以及阻燃剂复配技术的应用也是今后的研究重点。  相似文献   

2.
综述了近年来聚酰胺(PA)66阻燃剂的研究现状及前景。PA 66的机械强度高、耐磨性好、耐化学药品腐蚀性好,而阻燃型PA 66具有更好的阻燃性能,能够满足更多工业领域中零件的使用要求。用于PA 66的阻燃剂主要有卤系阻燃剂、磷系阻燃剂和氮系阻燃剂等。卤系阻燃剂阻燃效率高,但因其会释放有毒气体而将被限制使用,环境友好型的磷系阻燃剂和氮系阻燃剂的应用将更加广泛,高效、无毒的本质阻燃PA 66将是今后研究的重要方向。  相似文献   

3.
PA66阻燃改性研究   总被引:3,自引:3,他引:3  
通过卤系、氮系、磷系等阻燃体系对尼龙(PA)66进行阻燃改性研究,开发出一种赤磷与无机阻燃剂共用的复配阻燃体系。结果表明,当加入 赤磷10份、无机阻燃剂10份、玻纤30份时,利用该阻燃体系阻燃的PA66,其燃烧性能达FV-0级,拉伸强度大于100MPa,缺口冲击强度大于9kJ/m^2,综合性能优良。  相似文献   

4.
介绍了阻燃聚酰胺(PA)的发展脉络,总结了适用于PA的各类阻燃体系及其阻燃机理,包括卤系阻燃剂、磷系阻燃剂、氮系阻燃剂、无机阻燃剂、反应型阻燃剂。  相似文献   

5.
李杰  刘渊  王琪 《塑料工业》2006,34(12):16-18
采用三聚氰胺氰尿酸盐(MCA)/聚氨酯(TPU)复合阻燃剂阻燃PA66,解决了单独使用MCA阻燃PA66熔滴引燃脱脂棉问题,可使1.6 mm样条通过UL94V-0级别;研究了MCA/TPU复合阻燃剂阻燃PA66的阻燃机理,考察了阻燃材料的力学性能。  相似文献   

6.
氮系阻燃剂因高效的阻燃性能及分解产物低毒的特点被广泛应用于PA6工程塑料的阻燃中。文章综述了近年来应用于PA6工程塑料的氮系阻燃剂的研究及应用现状,并介绍了存在的问题及相应的解决方法,对应用于PA6的氮系阻燃剂的发展做出展望。  相似文献   

7.
阻燃剂对玻纤增强尼龙66性能的影响   总被引:2,自引:2,他引:2  
比较和分析了不同类型阻燃剂对玻纤增强尼龙(PA)66性能的影响。结果表明,在PA常用阻燃剂卤化物,红磷和氮化物中,红磷是帛得具有良好力学性能,电性能的阻燃增强PA66的最佳阻燃剂:溴化物阻燃的玻纤增强PA66也具有良好的综合性能;氮化物需加入较多的用量才能获得同样的阻燃效果;采用氮-磷或溴-磷复合阻燃体系可提高阻燃效果,减少阻燃剂总用量,从而保持玻纤增强PA66较高的力学性能,使其有更优异的使用性能。  相似文献   

8.
为改善聚酰胺66(PA66)的阻燃性能,以氮系阻燃剂三聚氰胺氰尿酸盐(MCA)和磷系阻燃剂9,10–二氢–9–氧杂–10–磷酰杂菲–丁二酸(DDP)协效,将原位聚合法与共聚法结合,经熔融缩聚制备氮-磷协效阻燃PA66树脂。利用傅立叶变换红外光谱仪、差示扫描量热仪、万能材料试验机、垂直燃烧仪和极限氧指数仪等研究阻燃PA66树脂的结构与性能。结果表明:随DDP含量的增加,阻燃PA66的相对黏度、熔点、结晶度和力学性能均呈下降趋势。当MCA含量为2%,DDP含量为4%时,阻燃PA66(FRPA66–4)的熔点、结晶温度和结晶度分别降至250.78℃,203.74℃,29.21%,FRPA66–4的拉伸强度和断裂伸长率分别下降为68.8 MPa和69.5%,比PA66降低了17.01%和17.46%。但PA66的阻燃性能得到改善,FRPA66–4的垂直燃烧测试达UL94 V–0级,极限氧指数为30.6%,阻燃效果良好。  相似文献   

9.
以二乙基次磷酸铝(Al Pi)和全氟丁基磺酸钾(PPFBS)为复配阻燃剂,在密炼机上通过熔融共混的方法制备Al Pi和PPFBS复配阻燃PA66复合材料,并通过热重质谱联用(TG–MS)和扫描电子显微镜(SEM)研究了复配阻燃剂对PA66复合材料阻燃性的影响及其阻燃机理。结果表明,当添加6份Al Pi和0.08份PPFBS的复配阻燃剂时,阻燃PA66复合材料可以通过垂直燃烧测试,阻燃等级达到V–0级,极限氧指数(LOI)为31.1%。复配阻燃体系的加入虽然降低了阻燃PA66复合材料的力学性能,但提高了阻燃PA66复合材料的热稳定性,阻燃PA66复合材料的残炭率由纯PA66的4.1%上升至10.2%,促进了连续、致密炭层的形成,而且燃烧过程中不断释放出不燃性气体。Al Pi和PPFBS复配后兼具凝聚相和气相阻燃机理,表现出良好的协效阻燃效果。  相似文献   

10.
采用赤磷阻燃母料(RPM440H)作为无卤阻燃剂,对再生尼龙(PA66、PA6)进行了阻燃改性。采用双螺杆挤出加工工艺,通过添加不同组分阻燃剂制得了耐漏电阻燃增强尼龙复合材料;比较了再生尼龙品种、阻燃剂(RPM440H)用量、协同阻燃剂及玻璃纤维对材料的改性效果;确定了最佳工艺参数和配方。结果表明,赤磷阻燃母料(RPM440H)对各品种再生尼龙(PA66、PA6)的阻燃效果均较理想;采用本工艺制得的阻燃增强尼龙复合材料的电性能、阻燃性能、机械性能优异,完全能满足耐漏电低压电子、电器件的要求,已成功应用在正泰、德力西、人民电器等低压漏电保护器中。  相似文献   

11.
高灼热丝温度环保型阻燃增强PA66的研制   总被引:2,自引:1,他引:1  
采用自制的新型绿色环保型阻燃复配体系制得了高灼热丝温度环保型阻燃增强聚酰胺(PA)66。结果表明,多元复合型阻燃剂/三氧化二锑阻燃体系可以使PA66/玻璃纤维(GF)的灼热丝温度大幅提高。当多元复合型阻燃剂、三氧化二锑、增韧剂的质量分数分别为14%、4%、5%时,材料的综合性能最佳,此时灼热丝温度为860℃,缺口冲击强度为7.2 kJ/m2,阻燃等级为UL94 V-0级。所研制的阻燃PA66/GF已成功应用于接触器、断路器外壳,电机碳刷架等的制备。  相似文献   

12.
为提高三聚氰胺聚磷酸盐(MPP)和二乙基次膦酸盐(OP)协效阻燃玻纤(GF)增强尼龙66(PA66)的综合性能,引入少量的无机阻燃剂硼酸锌(ZB)作为协效剂,系统研究了不同添加量的ZB对阻燃材料的阻燃性能、热稳定性、力学性能和白度的影响。结果表明,当MPP和OP的总添加量为15%,复配0.5%的ZB时,阻燃GF增强PA66的垂直燃烧阻燃等级达到UL94 V–0级,且热释放总量由MPP/OP体系的15.4 k J/g降为13.7 k J/g;ZB的引入促进了连续、致密炭层的形成,增强了凝聚相阻燃;ZB增强了阻燃材料的热稳定性,ZB复配量为1.0%的阻燃材料的初始降解温度提高到了301℃,有效避免了加工过程中的降解;当ZB添加量为1.0%时,阻燃材料的拉伸强度和缺口冲击强度分别为100.9 MPa和4.22 k J/m~2,均优于未添加阻燃剂的纯GF增强PA66;同时,样品的白度得到了明显提升,有利于阻燃GF增强PA66的工业化应用。  相似文献   

13.
聚磷酸三聚氰胺对玻纤增强PA66的膨胀阻燃作用   总被引:9,自引:2,他引:7  
采用自制的新型膨胀型阻燃剂——聚磷酸三聚氰胺(MPP)对玻纤增强PA66进行阻燃,以氧指数和垂直燃烧(UL94)评价了其阻燃作用;以热失重测定了材料的热分解性能;以扫描电镜观察了材料残炭的结构;并探讨了MPP阻燃玻纤增强PA66的阻燃机理。试验表明,单一MPP对玻纤增强PA66有良好的阻燃效果,当添加25%时,阻燃材料的氧指数为38,0%,达到UL94V-0级;MPP参与了玻纤增强PA66的降解过程,在材料表面形成了致密的隔热、隔氧的泡沫炭层。  相似文献   

14.
无卤阻燃增强PA66的研制及其应用   总被引:3,自引:1,他引:2  
以包覆红磷和三聚氰胺氰尿酸(MCA)作为协效阻燃剂,玻璃纤维作为增强体系,加入增容剂和其它添加剂,制备了一种无卤阻燃增强尼龙(PA)66材料.从阻燃性能、热性能、力学性能等方面表征两种阻燃剂的协效作用;探讨了增容剂的加入对复合体系性能的影响.结果表明,当PA66增强料、包覆红磷、MCA、增容剂的质量比为100∶15∶5∶6时,复合材料具有较好的阻燃性能和力学性能.该材料已广泛应用于电子、电器领域.  相似文献   

15.
无卤阻燃增强PA66的研制及其在断路器外壳中的应用   总被引:4,自引:3,他引:1  
采用红磷母粒阻燃玻璃纤维增强聚酰胺66(PA66),并添加适当的添加剂,制备了无卤阻燃增强PA66;考察了阻燃剂、增容剂及其它助剂对材料性能的影响。结果表明,该材料具有较高的力学性能、电绝缘性能和阻燃性能;用该材料制备的断路器外壳具有较好的阻燃性能及电绝缘性能,产品质量得到了客户认可。  相似文献   

16.
利用热失重分析法(TG)研究了聚酰胺(PA)66及溴化聚苯乙烯(BPS)、BPS协同Sb2O3阻燃PA66在不同升温速率下的热稳定性及热分解动力学,采用Kissinger及Flynn-Wall-Ozawa方法分析了PA66和阻燃PA66的热分解活化能;利用Coats-Redfern方法确定了PA66和阻燃PA66的热分解动力学机理及其模型,得出了聚合物主降解阶段的非等温动力学方程。结果表明,BPS协同Sb2O3阻燃体系阻燃PA66的效果最好,体系的降解模式发生了变化,PA66和BPS阻燃PA66的机理方程为g(α)=-ln(1-α),反应级数n=1,而BPS协同Sb2O3阻燃PA66的机理方程为g(α)=(1-α)-1-1,反应级数n=2。  相似文献   

17.
应用不同厂家的三聚氰胺脲酸盐(MCA)阻燃尼龙(PA)66,筛选出满足PA66加工条件的MCA,考察了其用量及表面处理对PA66阻燃性能和力学性能的影响,并对MCA阻燃PA66进行增韧改性研究.结果表明,E厂家提供的MCA满足PA66的加工条件,且其堆密度和白度较为优良.采用E厂家的MCA,当其用量为12~14份时阻燃...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号